scholarly journals Regulation of metabolism: the rest-to-work transition in skeletal muscle

2015 ◽  
Vol 309 (9) ◽  
pp. E793-E801 ◽  
Author(s):  
David F. Wilson

Mitochondrial oxidative phosphorylation is programmed to set and maintain metabolic homeostasis, and understanding that program is essential for an integrated view of cellular and tissue metabolism. The behavior predicted by a mechanism-based model for oxidative phosphorylation is compared with that experimentally measured for skeletal muscle when work is initiated. For the model, initiation of work is simulated by imposing a rate of ATP utilization of either 0.6 (equivalent of 13.4 ml O2·100 g tissue−1·min−1 or 6 μmol O2·g tissue−1·min−1) or 0.3 mM ATP/s. Creatine phosphate ([CrP]) decrease, both experimentally measured and predicted by the model, can be fit to a single exponential. Increase in ATP synthesis begins immediately but can show a “lag period,” during which the rate accelerates. The length of the lag period is similar for both experiment and model; in the model, the lag depends on intramitochondrial [NAD+]/[NADH], mitochondrial content, and size of the creatine pool ([CrP] + [Cr]) as well as the resting [CrP]/[Cr]. For in vivo conditions, increase in oxygen consumption may be linearly correlated with a decrease in [CrP] and an increase in inorganic phosphate ([Pi]) and [Cr]. The decrease in [CrP], resting and working steady state [CrP], and the increase in oxygen consumption are dependent on the Po2 in the inspired gas (experimental) or tissue Po2 (model). The metabolic behavior predicted by the model is consistent with available experimental measurements in muscle upon initiation of work, with the model providing valuable insight into how metabolic homeostasis is set and maintained.

2010 ◽  
Vol 299 (5) ◽  
pp. C1136-C1143 ◽  
Author(s):  
N. M. A. van den Broek ◽  
J. Ciapaite ◽  
K. Nicolay ◽  
J. J. Prompers

31P magnetic resonance spectroscopy (MRS) has been used to assess skeletal muscle mitochondrial function in vivo by measuring 1) phosphocreatine (PCr) recovery after exercise or 2) resting ATP synthesis flux with saturation transfer (ST). In this study, we compared both parameters in a rat model of mitochondrial dysfunction with the aim of establishing the most appropriate method for the assessment of in vivo muscle mitochondrial function. Mitochondrial dysfunction was induced in adult Wistar rats by daily subcutaneous injections with the complex I inhibitor diphenyleneiodonium (DPI) for 2 wk. In vivo 31P MRS measurements were supplemented by in vitro measurements of oxygen consumption in isolated mitochondria. Two weeks of DPI treatment induced mitochondrial dysfunction, as evidenced by a 20% lower maximal ADP-stimulated oxygen consumption rate in isolated mitochondria from DPI-treated rats oxidizing pyruvate plus malate. This was paralleled by a 46% decrease in in vivo oxidative capacity, determined from postexercise PCr recovery. Interestingly, no significant difference in resting, ST-based ATP synthesis flux was observed between DPI-treated rats and controls. These results show that PCr recovery after exercise has a more direct relationship with skeletal muscle mitochondrial function than the ATP synthesis flux measured with 31P ST MRS in the resting state.


2004 ◽  
Vol 286 (2) ◽  
pp. C457-C463 ◽  
Author(s):  
David J. Marcinek ◽  
Kenneth A. Schenkman ◽  
Wayne A. Ciesielski ◽  
Kevin E. Conley

The coupling of mitochondrial ATP synthesis and oxygen consumption (ratio of ATP and oxygen fluxes, P/O) plays a central role in cellular bioenergetics. Reduced P/O values are associated with mitochondrial pathologies that can lead to reduced capacity for ATP synthesis and tissue degeneration. Previous work found a wide range of values for P/O in normal mitochondria. To measure mitochondrial coupling under physiological conditions, we have developed a procedure for determining the P/O of skeletal muscle in vivo. This technique measures ATPase and oxygen consumption rates during ischemia with 31P magnetic resonance and optical spectroscopy, respectively. This novel approach allows the independent quantitative measurement of ATPase and oxygen flux rates in intact tissue. The quantitative measurement of oxygen consumption is made possible by our ability to independently measure the saturations of hemoglobin (Hb) and myoglobin (Mb) from optical spectra. Our results indicate that the P/O in skeletal muscle of the mouse hindlimb measured in vivo is 2.16 ± 0.24. The theoretical P/O for resting muscle is 2.33. Systemic treatment with 2,4-dinitrophenol to partially uncouple mitochondria does not affect the ATPase rate in the mouse hindlimb but nearly doubles the rate of oxygen consumption, reducing in vivo P/O to 1.37 ± 0.22. These results indicate that only a small fraction of the oxygen consumption in resting mouse skeletal muscle is nonphosphorylating under physiological conditions, suggesting that mitochondria are more tightly coupled than previously thought.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Ana Dinca ◽  
Wei-Ming Chien ◽  
Michael Chin

Barth Syndrome (BTHS) is caused by a single gene mutation in the mitochondrial transacylase, tafazzin (TAZ), which results in impaired lipid metabolism leading to dysfunction in highly energetic tissues such as the heart and skeletal muscle. TAZ remodels the signature mitochondrial phospholipid, cardiolipin (CL), which is responsible for providing support to the electron transport chain. BTHS patients suffer from growth deficiencies, cardiomyopathy, hypotonia and neutropenia. Currently, treatment for patients with BTHS is supportive, seeking to ameliorate rather than prevent heart problems, skeletal muscle problems and recurring infections. Protein therapy, on the other hand, might treat and even prevent cardiac, skeletal muscle as well as infection-related morbidities. We designed a recombinant TAZ protein containing a cell penetrating peptide in its C-terminus, which enables the recombinant TAZ to penetrate cells and then treated TAZ-deficient cells with it. We tested the permeability of the recombinant protein by direct delivery to H9C2 cardiomyoblasts and found that the protein is successfully taken up by the cells. We have generated a CRISPR-mediated TAZ knock out cardiomyoblast cell line and we found that TAZ knock out cells show a decrease in oxygen consumption as compared to the wild type cells; this is consistent with data from BTHS patient-derived cells. We are using this cell line to assess the enzymatic activity of the delivered protein by conducting mitochondrial respiration measurements. We have also acquired a mouse model of BTHS and are testing the recombinant TAZ in vivo. Preliminary data shows an augmentation in oxygen consumption following treatment with TAZ. These results indicate that the protein is able to reach the mitochondria, where it is enzymatically active and able to enhance respiration. As the protein is able to rescue respiration in cells in which tafazzin was absent, this suggests that our approach should not only be able to prevent onset of symptoms, but also rescue the phenotype in already affected tissues.


Author(s):  
Bernard Korzeniewski ◽  
Harry B. Rossiter

Computer simulations, using the "Pi double-threshold" mechanism of muscle fatigue postulated previously (the first threshold initiating progressive reduction in work efficiency and the second threshold resulting in exercise intolerance), demonstrated that several parameters of the skeletal muscle bioenergetic system can affect the maximum oxygen consumption (V̇O2max), critical power (CP) and oxygen consumption (V̇O2) on-kinetics in skeletal muscle. Simulations and experimental observations together demonstrate that endurance exercise training increases oxidative phosphorylation (OXPHOS) activity and/or each-step activation (ESA) intensity, the latter especially in the early stages of training. Here, new computer simulations demonstrate that an endurance training-induced increase in OXPHOS activity and decrease in peak Pi (Pipeak), at which exercise is terminated because of exercise intolerance, result in increased V̇O2max and CP, speeding of the primary phase II of V̇O2 on-kinetics and decrease of the V̇O2 slow component magnitude, consistent with their observed behavior in vivo. It is possible, but remains unknown, whether there is a contribution to this behavior of an increase in the critical Pi (Picrit), above which the additional ATP usage underlying the slow component begins, and decrease in the activity of the additional ATP usage (kadd). Thus, we offer a mechanism, involving Pi accumulation, Picrit and Pipeak, of the training-induced adaptations in V̇O2max, CP, and the primary and slow component phases of V̇O2 on-kinetics that was absent in the literature.


2008 ◽  
Vol 33 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Susanne Neschen ◽  
Yvonne Katterle ◽  
Julia Richter ◽  
Robert Augustin ◽  
Stephan Scherneck ◽  
...  

Uncoupling of oxidative phosphorylation represents a potential target for the treatment of hyperglycemia and insulin resistance in obesity and type 2 diabetes. The present study investigated whether the expression of uncoupling protein 1 in skeletal muscles of transgenic (mUCP1 TG) mice modulates insulin action in major insulin target tissues in vivo. Euglycemic-hyperinsulinemic clamps (17 pM·kg lean body mass−1·min−1) were performed in 9-mo-old hemizygous male mUCP1 TG mice and wild-type (WT) littermates matched for body composition. mUCP1 TG mice exhibited fasting hypoglycemia and hypoinsulinemia compared with WT mice, whereas fasting hepatic glucose production rates were comparable in both genotypes. mUCP1 TG mice were markedly more sensitive to insulin action compared with WT mice and displayed threefold higher glucose infusion rates, enhanced skeletal muscle and white adipose tissue glucose uptake, and whole body glycolysis rates. In the absence of alterations in plasma adiponectin concentrations, acceleration of insulin-stimulated glucose turnover in skeletal muscle of mUCP1 TG mice was accompanied by increased phosphorylated Akt-to-Akt and phosphorylated AMP-activated protein kinase (AMPK)-to-AMPK ratios compared with WT mice. UCP1-mediated uncoupling of oxidative phosphorylation in skeletal muscle was paralleled by AMPK activation and thereby stimulated insulin-mediated glucose uptake in skeletal muscle.


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S521
Author(s):  
Ian R. Lanza ◽  
Douglas E. Befroy ◽  
Danielle M. Wigmore ◽  
Jane A. Kent-Braun

2020 ◽  
pp. 1-10
Author(s):  
M.S. Davis ◽  
M.R. Fulton ◽  
A. Popken

The skeletal muscle of exercising horses develops pronounced hyperthermia and acidosis during strenuous or prolonged exercise, with very high tissue temperature and low pH associated with muscle fatigue or damage. The purpose of this study was to evaluate the individual effects of physiologically relevant hyperthermia and acidosis on equine skeletal muscle mitochondrial function, using ex vivo measurement of oxygen consumption to assess the function of different mitochondrial elements. Fresh triceps muscle biopsies from 6 healthy unfit Thoroughbred geldings were permeabilised to permit diffusion of small molecular weight substrates through the sarcolemma and analysed in a high resolution respirometer at 38, 40, 42, and 44 °C, and pH=7.1, 6.5, and 6.1. Oxygen consumption was measured under conditions of non-phosphorylating (leak) respiration and phosphorylating respiration through Complex I and Complex II. Data were analysed using a one-way repeated measures ANOVA and data are expressed as mean ± standard deviation. Leak respiration was ~3-fold higher at 44 °C compared to 38 °C regardless of electron source (Complex I: 22.88±3.05 vs 8.08±1.92 pmol O2/mg/s), P=0.002; Complex II: 79.14±23.72 vs 21.43±11.08 pmol O2/mg/s, P=0.022), resulting in a decrease in efficiency of oxidative phosphorylation. Acidosis had minimal effect on mitochondrial respiration at pH=6.5, but pH=6.1 resulted in a 50% decrease in mitochondrial oxygen consumption. These results suggest that skeletal muscle hyperthermia decreases the efficiency of oxidative phosphorylation through increased leak respiration, thus providing a specific biochemical basis for hyperthermia-induced muscle fatigue. The effect of myocellular acidosis on mitochondrial respiration was minimal under typical levels of acidosis, but atypically severe acidosis can lead to impairment of mitochondrial function.


2018 ◽  
Vol 8 (2) ◽  
pp. 204589401876829 ◽  
Author(s):  
Sasiharan Sithamparanathan ◽  
Mariana C. Rocha ◽  
Jehill D. Parikh ◽  
Karolina A. Rygiel ◽  
Gavin Falkous ◽  
...  

Mitochondrial dysfunction within the pulmonary vessels has been shown to contribute to the pathology of idiopathic pulmonary arterial hypertension (IPAH). We investigated the hypothesis of whether impaired exercise capacity observed in IPAH patients is in part due to primary mitochondrial oxidative phosphorylation (OXPHOS) dysfunction in skeletal muscle. This could lead to potentially new avenues of treatment beyond targeting the pulmonary vessels. Nine clinically stable participants with IPAH underwent cardiopulmonary exercise testing, in vivo and in vitro assessment of mitochondrial function by 31P-magnetic resonance spectroscopy (31P-MRS) and laboratory muscle biopsy analysis. 31P-MRS showed abnormal skeletal muscle bioenergetics with prolonged recovery times of phosphocreatine and abnormal muscle pH handling. Histochemistry and quadruple immunofluorescence performed on muscle biopsies showed normal function and subunit protein abundance of the complexes within the OXPHOS system. Our findings suggest that there is no primary mitochondrial OXPHOS dysfunction but raises the possibility of impaired oxygen delivery to the mitochondria affecting skeletal muscle bioenergetics during exercise.


Sign in / Sign up

Export Citation Format

Share Document