Lack of AMPKα2 enhances pyruvate dehydrogenase activity during exercise

2007 ◽  
Vol 293 (5) ◽  
pp. E1242-E1249 ◽  
Author(s):  
Ditte K. Klein ◽  
Henriette Pilegaard ◽  
Jonas T. Treebak ◽  
Thomas E. Jensen ◽  
Benoit Viollet ◽  
...  

5′-AMP-activated protein kinase (AMPK) was recently suggested to regulate pyruvate dehydrogenase (PDH) activity and thus pyruvate entry into the mitochondrion. We aimed to provide evidence for a direct link between AMPK and PDH in resting and metabolically challenged (exercised) skeletal muscle. Compared with rest, treadmill running increased AMPKα1 activity in α2KO mice (90%, P < 0.01) and increased AMPKα2 activity in wild-type (WT) mice (110%, P < 0.05), leading to increased AMPKα Thr172 (WT: 40%, α2KO: 100%, P < 0.01) and ACCβ Ser227 phosphorylation (WT: 70%, α2KO: 210%, P < 0.01). Compared with rest, exercise significantly induced PDH-E1α site 1 (WT: 20%, α2KO: 62%, P < 0.01) and site 2 (only α2KO: 83%, P < 0.01) dephosphorylation and PDHa [∼200% in both genotypes ( P < 0.01)]. Compared with WT, PDH dephosphorylation and activation was markedly enhanced in the α2KO mice both at rest and during exercise. The increased PDHa activity during exercise was associated with elevated glycolytic flux, and muscles from the α2KO mice displayed marked lactate accumulation and deranged energy homeostasis. Whereas mitochondrial DNA content was normal, the expression of several mitochondrial proteins was significantly decreased in muscle of α2KO mice. In isolated resting EDL muscles, activation of AMPK signaling by AICAR did not change PDH-E1α phosphorylation in either genotype. PDH is activated in mouse skeletal muscle in response to exercise and is independent of AMPKα2 expression. During exercise, α2KO muscles display deranged energy homeostasis despite enhanced glycolytic flux and PDHa activity. This may be linked to decreased mitochondrial oxidative capacity.

2004 ◽  
Vol 287 (4) ◽  
pp. E739-E743 ◽  
Author(s):  
Burton F. Holmes ◽  
David B. Lang ◽  
Morris J. Birnbaum ◽  
James Mu ◽  
G. Lynis Dohm

An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK α-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.


2004 ◽  
Vol 286 (5) ◽  
pp. E737-E743 ◽  
Author(s):  
S. A. Clark ◽  
Z.-P. Chen ◽  
K. T. Murphy ◽  
R. J. Aughey ◽  
M. J. McKenna ◽  
...  

The AMP-activated protein kinase (AMPK) cascade has been linked to many of the acute effects of exercise on skeletal muscle substrate metabolism, as well as to some of the chronic training-induced adaptations. We determined the effect of 3 wk of intensified training (HIT; 7 sessions of 8 × 5 min at 85% V̇o2 peak) in skeletal muscle from well-trained athletes on AMPK responsiveness to exercise. Rates of whole body substrate oxidation were determined during a 90-min steady-state ride (SS) pre- and post-HIT. Muscle metabolites and AMPK signaling were determined from biopsies taken at rest and immediately after exercise during the first and seventh HIT sessions, performed at the same (absolute) pre-HIT work rate. HIT decreased rates of whole body carbohydrate oxidation ( P < 0.05) and increased rates of fat oxidation ( P < 0.05) during SS. Resting muscle glycogen and its utilization during intense exercise were unaffected by HIT. However, HIT induced a twofold decrease in muscle [lactate] ( P < 0.05) and resulted in tighter metabolic regulation, i.e., attenuation of the decrease in the PCr/(PCr + Cr) ratio and of the increase in [AMPfree]/ATP. Resting activities of AMPKα1 and -α2 were similar post-HIT, with the magnitude of the rise in response to exercise similar pre- and post-HIT. AMPK phosphorylation at Thr172 on both the α1 and α2 subunits increased in response to exercise, with the magnitude of this rise being similar post-HIT. Acetyl-coenzyme A carboxylase-β phosphorylation was similar at rest and, despite HIT-induced increases in whole body rates of fat oxidation, did not increase post-HIT. Our results indicate that, in well-trained individuals, short-term HIT improves metabolic control but does not blunt AMPK signaling in response to intense exercise.


2007 ◽  
Vol 32 (5) ◽  
pp. 852-856 ◽  
Author(s):  
Sean L. McGee

Exercise increases the metabolic capacity of skeletal muscle, which improves whole-body energy homeostasis and contributes to the positive health benefits of exercise. This is, in part, mediated by increases in the expression of a number of metabolic enzymes, regulated largely at the level of transcription. At a molecular level, many of these genes are regulated by the class II histone deacetylase (HDAC) family of transcriptional repressors, in particular HDAC5, through their interaction with myocyte enhancer factor 2 transcription factors. HDAC5 kinases, including 5′-AMP-activated protein kinase and protein kinase D, appear to regulate skeletal muscle metabolic gene transcription by inactivating HDAC5 and inducing HDAC5 nuclear export. These mechanisms appear to participate in exercise-induced gene expression and could be important for skeletal muscle adaptations to exercise.


2007 ◽  
Vol 293 (5) ◽  
pp. R2059-R2069 ◽  
Author(s):  
Steven D. Mason ◽  
Helene Rundqvist ◽  
Ioanna Papandreou ◽  
Roger Duh ◽  
Wayne J. McNulty ◽  
...  

During endurance training, exercising skeletal muscle experiences severe and repetitive oxygen stress. The primary transcriptional response factor for acclimation to hypoxic stress is hypoxia-inducible factor-1α (HIF-1α), which upregulates glycolysis and angiogenesis in response to low levels of tissue oxygenation. To examine the role of HIF-1α in endurance training, we have created mice specifically lacking skeletal muscle HIF-1α and subjected them to an endurance training protocol. We found that only wild-type mice improve their oxidative capacity, as measured by the respiratory exchange ratio; surprisingly, we found that HIF-1α null mice have already upregulated this parameter without training. Furthermore, untrained HIF-1α null mice have an increased capillary to fiber ratio and elevated oxidative enzyme activities. These changes correlate with constitutively activated AMP-activated protein kinase in the HIF-1α null muscles. Additionally, HIF-1α null muscles have decreased expression of pyruvate dehydrogenase kinase I, a HIF-1α target that inhibits oxidative metabolism. These data demonstrate that removal of HIF-1α causes an adaptive response in skeletal muscle akin to endurance training and provides evidence for the suppression of mitochondrial biogenesis by HIF-1α in normal tissue.


1984 ◽  
Vol 246 (2) ◽  
pp. E160-E167 ◽  
Author(s):  
R. S. Williams ◽  
M. G. Caron ◽  
K. Daniel

To determine the relationship between oxidative capacity and characteristics of beta-adrenergic receptors (beta AR) in skeletal muscle, selected biochemical variables were quantitated in particulate preparations from soleus and gastrocnemius muscle from rats subjected to 10 wk of treadmill running and from three control groups: free-fed, sedentary controls; food-restricted, pair-weighted controls; and animals trained by swimming. Beta AR density and isoproterenol-stimulated adenylate cyclase activity were considerably greater in the slow-twitch oxidative soleus muscle than in the mixed fiber type gastrocnemius in animals from each group (P less than 0.005). Succinic dehydrogenase (SDH) activity of gastrocnemius was increased 23-42% (P less than 0.05) in runners over each of the control groups, concommitantly with a 15-27% increase (P less than 0.05) in beta AR density (Bmax for binding of 125I-cyanopindolol). In 24 animals from all four treatment groups, there was a significant correlation between SDH activity and beta AR density (r = 0.68; P less than 0.001). We conclude that BAR density correlates positively with oxidative capacity in skeletal muscle, but further studies are required to determine the physiological importance of these differences.


1997 ◽  
Vol 82 (6) ◽  
pp. 1862-1868 ◽  
Author(s):  
Richard M. McAllister ◽  
Brian L. Reiter ◽  
John F. Amann ◽  
M. Harold Laughlin

McAllister, Richard M., Brian L. Reiter, John F. Amann, and M. Harold Laughlin. Skeletal muscle biochemical adaptations to exercise training in miniature swine. J. Appl. Physiol. 82(6): 1862–1868, 1997.—The primary purpose of this study was to test the hypothesis that endurance exercise training induces increased oxidative capacity in porcine skeletal muscle. To test this hypothesis, female miniature swine were either trained by treadmill running 5 days/wk over 16–20 wk (Trn; n = 35) or pen confined (Sed; n = 33). Myocardial hypertrophy, lower heart rates during submaximal stages of a maximal treadmill running test, and increased running time to exhaustion during that test were indicative of training efficacy. A variety of skeletal muscles were sampled and subsequently assayed for the enzymes citrate synthase (CS), 3-hydroxyacyl-CoA dehydrogenase, and lactate dehydrogenase and for antioxidant enzymes. Fiber type composition of a representative muscle was also determined histochemically. The largest increase in CS activity (62%) was found in the gluteus maximus muscle (Sed, 14.7 ± 1.1 μmol ⋅ min−1 ⋅ g−1; Trn, 23.9 ± 1.0; P < 0.0005). Muscles exhibiting increased CS activity, however, were located primarily in the forelimb; ankle and knee extensor and respiratory muscles were unchanged with training. Only two muscles exhibited higher 3-hydroxyacyl-CoA dehydrogenase activity in Trn compared with Sed. Lactate dehydrogenase activity was unchanged with training, as were activities of antioxidant enzymes. Histochemical analysis of the triceps brachii muscle (long head) revealed lower type IIB fiber numbers in Trn (Sed, 42 ± 6%; Trn, 10 ± 4; P < 0.01) and greater type IID/X fiber numbers (Sed, 11 ± 2; Trn, 22 ± 3; P < 0.025). These findings indicate that porcine skeletal muscle adapts to endurance exercise training in a manner similar to muscle of humans and other animal models, with increased oxidative capacity. Specific muscles exhibiting these adaptations, however, differ between the miniature swine and other species.


2001 ◽  
Vol 280 (5) ◽  
pp. E677-E684 ◽  
Author(s):  
Nicolas Musi ◽  
Tatsuya Hayashi ◽  
Nobuharu Fujii ◽  
Michael F. Hirshman ◽  
Lee A. Witters ◽  
...  

The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-β-d-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPKα1 and AMPKα2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-β-d-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3- O-methyl-d-glucose (3-MG) uptake. There were dose-dependent increases in AMPKα2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPKα1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPKα2 activity and 3-MG uptake but had little effect on AMPKα1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPKα1 and -α2 activity and 3-MG uptake. Although the AMPKα1 and -α2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPKα2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.


1995 ◽  
Vol 269 (3) ◽  
pp. E458-E468 ◽  
Author(s):  
C. T. Putman ◽  
N. L. Jones ◽  
L. C. Lands ◽  
T. M. Bragg ◽  
M. G. Hollidge-Horvat ◽  
...  

The regulation of the active form of pyruvate dehydrogenase (PDHa) and related metabolic events were examined in human skeletal muscle during repeated bouts of maximum exercise. Seven subjects completed three consecutive 30-s bouts of maximum isokinetic cycling, separated by 4 min of recovery. Biopsies of the vastus lateralis were taken before and immediately after each bout. PDHa increased from 0.45 +/- 0.15 to 2.96 +/- 0.38, 1.10 +/- 0.11 to 2.91 +/- 0.11, and 1.28 +/- 0.18 to 2.82 +/- 0.32 mmol.min-1.kg wet wt-1 during bouts 1, 2, and 3, respectively. Glycolytic flux was 13-fold greater than PDHa in bouts 1 and 2 and 4-fold greater during bout 3. This discrepancy between the rate of pyruvate production and oxidation resulted in substantial lactate accumulation to 89.5 +/- 11.6 in bout 1, 130.8 +/- 13.8 in bout 2, and 106.6 +/- 10.1 mmol/kg dry wt in bout 3. These events coincided with an increase in the mitochondrial oxidation state, as reflected by a fall in mitochondrial NADH/NAD, indicating that muscle lactate production during exercise was not an O2-dependent process in our subjects. During exercise the primary factor regulating PDHa transformation was probably intracellular Ca2+. In contrast, the primary regulatory factors causing greater PDHa during recovery were lower ATP/ADP and NADH/NAD and increased concentrations of pyruvate and H+. Greater PDHa during recovery facilitated continued oxidation of the lactate load between exercise bouts.


2021 ◽  
Author(s):  
Ada Admin ◽  
David M Presby ◽  
Michael C Rudolph ◽  
Vanessa D Sherk ◽  
Matthew R Jackman ◽  
...  

Moderate weight loss improves numerous risk factors for cardiometabolic disease; however, long-term weight loss maintenance (WLM) is often thwarted by metabolic adaptations that suppress energy expenditure and facilitate weight regain. Skeletal muscle has a prominent role in energy homeostasis; therefore, we investigated the effect of WLM and weight regain on skeletal muscle in rodents. In skeletal muscle of obesity-prone rats, WLM reduced fat oxidative capacity and downregulated genes involved in fat metabolism. Interestingly, even after weight was regained, genes involved in fat metabolism genes were also reduced. We then subjected mice with skeletal muscle lipoprotein lipase overexpression (mCK-hLPL), which augments fat metabolism, to WLM and weight regain and found that mCK-hLPL attenuates weight regain by potentiating energy expenditure. Irrespective of genotype, weight regain suppressed dietary fat oxidation and downregulated genes involved in fat metabolism in skeletal muscle. However, mCK-hLPL mice oxidized more fat throughout weight regain and had greater expression of genes involved in fat metabolism and lower expression of genes involved in carbohydrate metabolism during WLM and regain. In summary, these results suggest that skeletal muscle fat oxidation is reduced during WLM and regain, and therapies that improve skeletal muscle fat metabolism may attenuate rapid weight regain.


2018 ◽  
Vol 19 (9) ◽  
pp. 2813 ◽  
Author(s):  
Taira Wada ◽  
Yuya Ichihashi ◽  
Emi Suzuki ◽  
Yasuhiro Kosuge ◽  
Kumiko Ishige ◽  
...  

Brain and muscle arnt-like protein 1 (BMAL1), is a transcription factor known to regulate circadian rhythm. BMAL1 was originally characterized by its high expression in the skeletal muscle. Since the skeletal muscle is the dominant organ system in energy metabolism, the possible functions of BMAL1 in the skeletal muscle include the control of metabolism. Here, we established that its involvement in the regulation of oxidative capacity in the skeletal muscle. Muscle-specific Bmal1 KO mice (MKO mice) displayed several physiological hallmarks for the increase of oxidative capacity. This included increased energy expenditure and oxygen consumption, high running endurance and resistance to obesity with improved metabolic profiles. Also, the phosphorylation status of AMP-activated protein kinase and its downstream signaling substrate acetyl-CoA carboxylase in the MKO mice were substantially higher than those in the Bmal1flox/flox mice. In addition, biochemical and histological studies confirmed the substantial activation of oxidative fibers in the skeletal muscle of the MKO mice. The mechanism includes the regulation of Cacna1s expression, followed by the activation of calcium—nuclear factor of activated T cells (NFAT) axis. We thus conclude that BMAL1 is a critical regulator of the muscular fatty acid level under nutrition overloading and that the mechanism involves the control of oxidative capacity.


Sign in / Sign up

Export Citation Format

Share Document