scholarly journals CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance

2013 ◽  
Vol 304 (9) ◽  
pp. E951-E963 ◽  
Author(s):  
Chang-An Guo ◽  
Sophia Kogan ◽  
Shinya U. Amano ◽  
Mengxi Wang ◽  
Sezin Dagdeviren ◽  
...  

The pathophysiology of obesity and type 2 diabetes in rodents and humans is characterized by low-grade inflammation in adipose tissue and liver. The CD40 receptor and its ligand CD40L initiate immune cell signaling promoting inflammation, but conflicting data on CD40L-null mice confound its role in obesity-associated insulin resistance. Here, we demonstrate that CD40 receptor-deficient mice on a high-fat diet display the expected decrease in hepatic cytokine levels but paradoxically exhibit liver steatosis, insulin resistance, and glucose intolerance compared with their age-matched wild-type controls. Hyperinsulinemic-euglycemic clamp studies also demonstrated insulin resistance in glucose utilization by the CD40-null mice compared with wild-type mice. In contrast to liver, adipose tissue in CD40-deficient animals harbors elevated cytokine levels and infiltration of inflammatory cells, particularly macrophages and CD8+effector T cells. In addition, ex vivo explants of epididymal adipose tissue from CD40−/−mice display elevated basal and isoproterenol-stimulated lipolysis, suggesting a potential increase of lipid efflux from visceral fat to the liver. These findings reveal that 1) CD40-null mice represent an unusual model of hepatic steatosis with reduced hepatic inflammation, and 2) CD40 unexpectedly functions in adipose tissue to attenuate its inflammation in obesity, thereby protecting against hepatic steatosis.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-44-SCI-44
Author(s):  
Xiaoxia Li

Abstract Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 44 (5) ◽  
pp. 512-520 ◽  
Author(s):  
Débora Romualdo Lacerda ◽  
Michele Macedo Moraes ◽  
Albená Nunes-Silva ◽  
Kátia Anunciação Costa ◽  
Débora Fernandes Rodrigues ◽  
...  

Obesity is associated with an energy imbalance that results from excessive energy intake, low diet quality, and a sedentary lifestyle. The increased consumption of a high-refined carbohydrate (HC) diet is strongly related to higher adiposity and low-grade inflammation. Aerobic training is a well-known nonpharmacological intervention to treat obesity and metabolic disturbances. However, the mechanisms through which aerobic training ameliorates the low-grade inflammation induced by an HC diet should be further investigated. Our hypothesis herein was that aerobic training would decrease the recruitment of leukocytes in adipose tissue, thereby reducing the levels of cytokines and improving metabolism in mice fed an HC diet. Male Balb/c mice were assigned to the following groups: control diet/nontrained (C-NT), control diet/trained (C-T), high-refined carbohydrate diet/nontrained (HC-NT), and high-refined carbohydrate diet/trained (HC-T). Mice were submitted to moderate-intensity training sessions that consisted of running 60 min per day for 8 weeks. An intravital microscopy technique was performed in vivo in anesthetized mice to visualize the microvasculature of the adipose tissue. The HC diet induced obesity and increased the influx of immune cells into the adipose tissue. In contrast, HC-T mice presented a lower adiposity and adipocyte area. Furthermore, relative to HC-NT mice, HC-T mice showed increased resting energy expenditure, decreased recruitment of immune cells in the adipose tissue, reduced cytokine levels, and ameliorated hyperglycemia and fatty liver deposition. Collectively, our data enhance understanding about the anti-inflammatory effect of aerobic training and shed light on the adipose tissue-mediated mechanisms by which training promotes a healthier metabolic profile.


2018 ◽  
Vol 314 (5) ◽  
pp. E433-E447 ◽  
Author(s):  
Chih-Wei Liu ◽  
Hung-Cheng Tsai ◽  
Chia-Chang Huang ◽  
Chang-Youh Tsai ◽  
Yen-Bo Su ◽  
...  

In obesity, there are no effective therapies for parallel immune and metabolic abnormalities, including systemic/tissue insulin-resistance/inflammation, adiposity and hepatic steatosis. Caffeine has anti-inflammation, antihepatic steatosis, and anti-insulin resistance effects. In this study, we evaluated the effects and molecular mechanisms of 6 wk of caffeine treatment (HFD-caf) on immunological and metabolic abnormalities of high-fat diet (HFD)-induced obese rats. Compared with HFD vehicle (HFD-V) rats, in HFD-caf rats the suppressed circulating immune cell inflammatory [TNFα, MCP-1, IL-6, intercellular adhesion molecule 1 (ICAM-1), and nitrite] profiles were accompanied by decreased liver, white adipose tissue (WAT), and muscle macrophages and their intracellular cytokine levels. Metabolically, the increase in metabolic rates reduced lipid accumulation in various tissues, resulting in reduced adiposity, lower fat mass, decreased body weight, amelioration of hepatic steatosis, and improved systemic/muscle insulin resistance. Further mechanistic approaches revealed an upregulation of tissue lipogenic [(SREBP1c, fatty acid synthase, acetyl-CoA carboxylase)/insulin-sensitizing (GLUT4 and p-IRS1)] markers in HFD-caf rats. Significantly, ex vivo experiments revealed that the cytokine release by the cocultured peripheral blood mononuclear cell (monocyte) and WAT (adipocyte), which are known to stimulate macrophage migration and hepatocyte lipogenesis, were lower in HFD-V groups than HFD-caf groups. Caffeine treatment simultaneously ameliorates immune and metabolic pathogenic signals present in tissue to normalize immunolgical and metabolic abnormalities found in HFD-induced obese rats.


2021 ◽  
Author(s):  
Omar Sharif ◽  
Julia Stefanie Brunner ◽  
Ana Korosec ◽  
Rui Martins ◽  
Alexander Jais ◽  
...  

Obesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated ATM-expressed TREM2 promoted health. Here, we identified that in mice TREM2 deficiency aggravated diet-induced insulin resistance and hepatic steatosis independently of fat and cholesterol levels. Metabolomics linked TREM2 deficiency with elevated obesity-instigated serum ceramides that correlated with impaired insulin sensitivity. Remarkably, while inhibiting ceramide synthesis exerted no influences on TREM2-dependent ATM remodeling, inflammation or lipid load, it restored insulin tolerance, reversing adipose hypertrophy and secondary hepatic steatosis of TREM2-deficient animals. Bone marrow transplantation experiments revealed unremarkable influences of immune cell-expressed TREM2 on health instead demonstrating that WAT-intrinsic mechanisms impinging on sphingolipid metabolism dominate in TREM2’s systemic protective effects on metabolic health.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Junling Yang ◽  
Ken-Ichiro Fukuchi

Obesity significantly increases the risk of developing type 2 diabetes mellitus and other metabolic diseases. Obesity is associated with chronic low-grade inflammation in white adipose tissues, which is thought to play an essential role in developing insulin resistance. Many lines of evidence indicate that toll-like receptors (TLRs) and their downstream signaling pathways are involved in development of chronic low-grade inflammation and insulin resistance, which are associated with obesity. Mice lacking molecules positively involved in the TLR signaling pathways are generally protected from high-fat diet-induced inflammation and insulin resistance. In this study, we have determined the effects of genetic deficiency of toll/interleukin-1 receptor-domain-containing adaptor-inducing interferon-β (TRIF) on food intake, bodyweight, glucose metabolism, adipose tissue macrophage polarization, and insulin signaling in normal chow diet-fed mice to investigate the role of the TRIF-dependent TLR signaling in adipose tissue metabolism and inflammation. TRIF deficiency (TRIF−/−) increased food intake and bodyweight. The significant increase in bodyweight in TRIF−/− mice was discernible as early as 24 weeks of age and sustained thereafter. TRIF−/− mice showed impaired glucose tolerance in glucose tolerance tests, but their insulin tolerance tests were similar to those in TRIF+/+ mice. Although no difference was found in the epididymal adipose mass between the two groups, the percentage of CD206+ M2 macrophages in epididymal adipose tissue decreased in TRIF−/− mice compared with those in TRIF+/+ mice. Furthermore, activation of epididymal adipose AKT in response to insulin stimulation was remarkably diminished in TRIF−/− mice compared with TRIF+/+ mice. Our results indicate that the TRIF-dependent TLR signaling contributes to maintaining insulin/AKT signaling and M2 macrophages in epididymal adipose tissue under a normal chow diet and provide new evidence that TLR4-targeted therapies for type 2 diabetes require caution.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Banumathi K. Cole ◽  
Margaret A. Morris ◽  
Wojciech J. Grzesik ◽  
Kendall A. Leone ◽  
Jerry L. Nadler

Type 2 diabetes is associated with obesity, insulin resistance, and inflammation in adipose tissue. 12/15-Lipoxygenase (12/15-LO) generates proinflammatory lipid mediators, which induce inflammation in adipose tissue. Therefore we investigated the role of 12/15-LO activity in mouse white adipose tissue in promoting obesity-induced local and systemic inflammatory consequences. We generated a mouse model for fat-specific deletion of 12/15-LO,aP2-Cre;12/15-LOloxP/loxP, which we call ad-12/15-LO mice, and placed wild-type controls and ad-12/15-LO mice on a high-fat diet for 16 weeks and examined obesity-induced inflammation and insulin resistance. High-fat diet-fed ad-12/15-LO exhibited improved fasting glucose levels and glucose metabolism, and epididymal adipose tissue from these mice exhibited reduced inflammation and macrophage infiltration compared to wild-type mice. Furthermore, fat-specific deletion of 12/15-LO led to decreased peripheral pancreatic islet inflammation with enlarged pancreatic islets when mice were fed the high-fat diet compared to wild-type mice. These results suggest an interesting crosstalk between 12/15-LO expression in adipose tissue and inflammation in pancreatic islets. Therefore, deletion of 12/15-LO in adipose tissue can offer local and systemic protection from obesity-induced consequences, and blocking 12/15-LO activity in adipose tissue may be a novel therapeutic target in the treatment of type 2 diabetes.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ming Zhai ◽  
Peipei Luan ◽  
Yefei Shi ◽  
Bo Li ◽  
Jianhua Kang ◽  
...  

Background. Low-grade chronic inflammation in dysfunctional adipose tissue links obesity with insulin resistance through the activation of tissue-infiltrating immune cells. Numerous studies have reported on the pathogenesis of insulin-resistance. However, few studies focused on genes from genomic database. In this study, we would like to explore the correlation of genes and immune cells infiltration in adipose tissue via comprehensive bioinformatics analyses and experimental validation in mice and human adipose tissue. Methods. Gene Expression Omnibus (GEO) datasets (GSE27951, GSE55200, and GSE26637) of insulin-resistant individuals or type 2 diabetes patients and normal controls were downloaded to get differently expressed genes (DEGs), and GO and KEGG pathway analyses were performed. Subsequently, we integrated DEGs from three datasets and constructed commonly expressed DEGs’ PPI net-works across datasets. Center regulating module of DEGs and hub genes were screened through MCODE and cytoHubba in Cytoscape. Three most significant hub genes were further analyzed by GSEA analysis. Moreover, we verified the predicted hub genes by performing RT qPCR analysis in animals and human samples. Besides, the relative fraction of 22 immune cell types in adipose tissue was detected by using the deconvolution algorithm of CIBERSORT (Cell Type Identification by Estimating Relative Subsets of RNA Transcripts). Furthermore, based on the significantly changed types of immune cells, we performed correlation analysis between hub genes and immune cells. And, we performed immunohistochemistry and immunofluorescence analysis to verify that the hub genes were associated with adipose tissue macrophages (ATM). Results. Thirty DEGs were commonly expressed across three datasets, most of which were upregulated. DEGs mainly participated in the process of multiple immune cells’ infiltration. In protein-protein interaction network, we identified CSF1R, C1QC, and TYROBP as hub genes. GSEA analysis suggested high expression of the three hub genes was correlated with immune cells functional pathway’s activation. Immune cell infiltration and correlation analysis revealed that there were significant positive correlations between TYROBP and M0 macrophages, CSF1R and M0 macrophages, Plasma cells, and CD8 T cells. Finally, hub genes were associated with ATMs infiltration by experimental verification. Conclusions. This article revealed that CSF1R, C1QC, and TYROBP were potential hub genes associated with immune cells’ infiltration and the function of proinflammation, especially adipose tissue macrophages, in the progression of obesity-induced diabetes or insulin-resistance.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Monika Rech ◽  
Kristiaan Wouters ◽  
Julie Lecomte ◽  
Nicole Bitsch ◽  
Stephane Heymans ◽  
...  

The co-existence of diabetes, obesity, hypertension - diabesotension - is a major burden in western societies and often culminates into heart failure (HF). Diabesotension is associated with a chronic status of low-grade inflammation, involving macrophage infiltration into adipose and cardiac tissues, local activation of inflammatory pathways and concomitant insulin-resistance. We showed that the microRNA miR-155 is a powerful modulator of hypertension-induced cardiac inflammation and HF. Here we hypothesize that absence of miR-155 in macrophages protects against adipose tissue and cardiac inflammation during diabesotension and thereby prevents insulin resistance and cardiac dysfunction. Male C57Bl/6J mice received a bone marrow transplantation of miR-155 WT (n=30) or miR-155 KO (n=30) donors with same genetic background. High fat (HFD; n=22/gr) or chow diet (n=8/gr) was given for 20 weeks. An HFD subgroup was subjected to pressure overload by angiotensin II (1.5mg/kg/d) for 4 weeks (HFD+PO; n=12/gr). Glycaemia, glucose tolerance test, cardiac MRI were performed after 16 and/or 20 weeks. Organs were stored for histology, RNA and FACS analysis. After 16 weeks of HFD, body weight (+11% WT; +14% KO; p<0.05) and glycaemia (+16% WT; +18% KO; p<0.05) increased compared to chow diet animals in both genotypes, confirming the status of obesity and pre-diabetes. Absence of macrophage miR-155 protected HFD-mice from glucose intolerance (at T15: WT 25.08; KO 18.15 mmol/L; p<0.05), suggesting that adipose tissue macrophages might contribute to insulin resistance. In addition, HFD+PO caused mild systolic dysfunction in WT but not in miR-155 KO animals compared to control (ejection fraction: -19% WT, p<0.05; -7% KO, n.s.). While cardiac interstitial fibrosis was not affected by absence of macrophage miR-155, cardiac CD45-positive leukocyte infiltration upon HFD+PO was abrogated. HFD+PO-induced cardiac expression of two PPAR-dependent metabolic genes, angiopoietin-like 4 and uncoupling protein 3, is repressed in the absence of macrophage miR-155. Our data suggest that macrophage miR-155 plays a role in the development of insulin resistance and cardiac dysfunction, possibly by affecting local immune cell function and metabolic programming.


2021 ◽  
Author(s):  
Omar Sharif ◽  
Julia Stefanie Brunner ◽  
Ana Korosec ◽  
Rui Martins ◽  
Alexander Jais ◽  
...  

Obesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated ATM-expressed TREM2 promoted health. Here, we identified that in mice TREM2 deficiency aggravated diet-induced insulin resistance and hepatic steatosis independently of fat and cholesterol levels. Metabolomics linked TREM2 deficiency with elevated obesity-instigated serum ceramides that correlated with impaired insulin sensitivity. Remarkably, while inhibiting ceramide synthesis exerted no influences on TREM2-dependent ATM remodeling, inflammation or lipid load, it restored insulin tolerance, reversing adipose hypertrophy and secondary hepatic steatosis of TREM2-deficient animals. Bone marrow transplantation experiments revealed unremarkable influences of immune cell-expressed TREM2 on health instead demonstrating that WAT-intrinsic mechanisms impinging on sphingolipid metabolism dominate in TREM2’s systemic protective effects on metabolic health.


2014 ◽  
Vol 211 (5) ◽  
pp. 887-907 ◽  
Author(s):  
Minjia Yu ◽  
Hao Zhou ◽  
Junjie Zhao ◽  
Nengming Xiao ◽  
Sanjoy Roychowdhury ◽  
...  

Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor–MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet–induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document