Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men

2008 ◽  
Vol 295 (3) ◽  
pp. E686-E691 ◽  
Author(s):  
Martin Clodi ◽  
Greisa Vila ◽  
René Geyeregger ◽  
Michaela Riedl ◽  
Thomas M. Stulnig ◽  
...  

Oxytocin is a hormone and neurotransmitter found to have anti-inflammatory functions in rodents. Here we used experimental bacterial endotoxinemia to examine the role of exogenous oxytocin administration on innate immune responses in humans. Ten healthy men received, in a randomized, placebo-controlled, crossover design, placebo, oxytocin, LPS, and LPS + oxytocin. Oxytocin treatment resulted in a transient or prolonged reduction of endotoxin-induced increases in plasma ACTH, cortisol, procalcitonin, TNF-α, IL-1 receptor antagonist, IL-4, IL-6, macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, monocyte chemoattractant protein-1 (MCP-1), interferon-inducible protein 10, and VEGF. In vitro, oxytocin had no impact on LPS effects in releasing TNF-α, IL-6, and MCP-1 in monocytes and peripheral blood mononuclear cells from healthy human donors. In summary, oxytocin decreases the neuroendocrine and cytokine activation caused by bacterial endotoxin in men, possibly due to the pharmacological modulation of the cholinergic anti-inflammatory pathway. Oxytocin might be a candidate for the therapy of inflammatory diseases and conditions associated with high cytokine and VEGF levels.

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 476
Author(s):  
Walied Alarif ◽  
Sultan Al-Lihaibi ◽  
Nahed Bawakid ◽  
Ahmed Abdel-Lateff ◽  
Hamdan Al-malky

Three new rare C12 acetogenins (enyne derivatives 1–3) were isolated from the organic extract obtained from the red alga Laurencia obtusa, collected from the Red Sea. The chemical structures of the isolated compounds were established by spectroscopical data analyses. Potent anti-inflammatory effect of the isolated metabolites was evidenced by inhibition of the release of inflammatory mediators (e.g., TNF-α, IL-1β and IL-6) by employing Human Peripheral Blood Mononuclear Cells (PBMC).


2013 ◽  
Vol 109 (02) ◽  
pp. 280-289 ◽  
Author(s):  
Maria Annunziata Carluccio ◽  
Mariangela Pellegrino ◽  
Nadia Calabriso ◽  
Carlo Storelli ◽  
Giuseppe Martines ◽  
...  

SummaryMatrix metalloproteinase (MMP)-9 plays an important role in stroke by accelerating matrix degradation, disrupting the blood-brain barrier and increasing infarct size. Dipyridamole is an antiplatelet agent with recognised benefits in ischaemic stroke prevention. In addition to its antiplatelet properties, recent studies have reported that dipyridamole also features anti-inflammatory and anti-oxidant properties. We therefore investigated whether dipyridamole can ameliorate the proinflammatory profile of human monocytes, a source of MMP-9 in stroke, in terms of regulation of MMP-9 activity and expression, and explored underlying mechanisms. Human peripheral blood mononuclear cells (PBMC) and U937 cells were treated with increasing concentrations of dipyridamole (up to 10 µg/ml) for 60 minutes before stimulation with tumour necrosis factor (TNF)-α or phorbol myristate acetate (PMA). Exposure of PBMC and U937 to dipyridamole reduced TNF-α- and PMA-induced MMP-9 activity and protein release as well as MMP-9 mRNA, without significantly affecting the release of TIMP-1. This inhibitory effect was independent of dipyridamole-induced cyclic adeno-sine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) increase. Correspondingly, dipyridamole also significantly inhibited TNF-α-induced nuclear factor (NF)-κB activation and nuclear translocation of the p65 NF-κB subunit through a mechanism involving the inhibition of IkBα degradation and p38 MAPK activation. In conclusion, dipyridamole, at therapeutically achievable concentrations, reduces the expression and release of MMP-9 through a mechanism involving p38 MAPK and NF-κB inhibition. These results indicate that dipyridamole exerts anti-inflammatory properties in human monocytes that may favourably contribute to its actions in the secondary prevention of stroke, independent of its antiplatelet properties.


Author(s):  
Sangeeta Mohanty ◽  
Abhisek Pal ◽  
V Badireenath Konkimalla ◽  
Sudam Chandra Si

Objective: The objective of this study was to establish the anti-inflammatory activity of sulforaphane (SFN) in different acute and subchronic models of inflammation. Methods: The anti-inflammatory activity of SFN was evaluated by the secretion of proinflammatory cytokines in rat peripheral blood mononuclear cells (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) which are important mediators of inflammation as determined by enzyme-linked immunosorbent assay. Furthermore, paw volume was determined in various acute models of inflammation, and percentage inhibition of granuloma tissue was assessed by cotton pellet-induced granuloma model. From serum, serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, and alkaline phosphatase levels were determined which is followed by assay for estimation of antioxidants such as superoxide dismutase (SOD), catalase, and glutathione (GSH). Results: SFN showed significant anti-inflammatory activity against paw edema induced by carrageenin/histamine/egg-albumin. A remarkable control in inflammation was observed most notably at the highest test dose of 5 mg/kg in the subchronic granuloma model. In addition, the release of inflammatory cytokines such as IL-6 and TNF-α which is responsible for inflammatory activity gets attenuated by SFN (∗p<0.05; ∗∗p< 0.01). Moreover, toxic control rats showed significant decreased levels of GSH, catalase, and SOD and increased the level of serum hepatic enzymes which gets reversed by SFN in dose-dependent manner. Conclusions: The present findings demonstrated that SFN can recover inflammation by inhibiting TNF-α and IL-6 in inflammation process.


2006 ◽  
Vol 13 (3) ◽  
pp. 319-328 ◽  
Author(s):  
Madhavan P. Nair ◽  
Supriya Mahajan ◽  
Jessica L. Reynolds ◽  
Ravikumar Aalinkeel ◽  
Harikrishnan Nair ◽  
...  

ABSTRACT The flavonoids comprise a large class of low-molecular-weight plant metabolites ubiquitously distributed in food plants. These dietary antioxidants exert significant antitumor, antiallergic, and anti-inflammatory effects. The molecular mechanisms of their biological effects remain to be clearly understood. We investigated the anti-inflammatory potentials of a safe, common dietary flavonoid component, quercetin, for its ability to modulate the production and gene expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) by human peripheral blood mononuclear cells (PBMC). Our results showed that quercetin significantly inhibited TNF-α production and gene expression in a dose-dependent manner. Our results provide direct evidence of the anti-inflammatory effects of quercetin by PBMC, which are mediated by the inhibition of the proinflammatory cytokine TNF-α via modulation of NF-κβ1 and Iκβ.


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
G.P. DeMuri ◽  
L.M. Lehtoranta ◽  
J.C. Eickhoff ◽  
M.J. Lehtinen ◽  
E.R. Wald

Several studies have demonstrated a decrease in upper respiratory infection (URI) frequency and severity in subjects taking probiotic supplements. We hypothesised beneficial effects of probiotics on viral URI in children are due to modulation of inflammatory innate immune responses. We tested this hypothesis, providing children with a probiotic combination of Lactobacillus acidophilus/Bidfidobacterium animalis ssp. lactis Bi-07 (NCFM/Bi-07) and measuring levels of cytokines in response to stimulation of peripheral blood mononuclear cells (PBMCs) to toll-like receptor (TLR) 7/8 agonist resiquimod (R848). In this open label study, 21 (2 dropouts) children received probiotic containing 5×109 cfu each of NCFM/(Bi-07) daily for 30 days. Whole blood was taken from each subject at study entry and 30 days for culture of PBMCs. PBMCs stimulated with resiquimod (R848) or unstimulated were incubated and a panel of immune markers was measured. There was a significant decrease in the net (stimulated-null) level of myeloid progenitor inhibitory factor 1 (MPIF-1) (mean decrease 0.1 ng/ml, 95% confidence interval 0.01-0.24, P=0.032) following probiotic supplementation. The change in immune marker levels after supplementation, when analysed together with respect to expected inflammatory/anti-inflammatory effects, was increased for interleukin (IL)-10 and decreased for MPIF-1, IL-8, interferon gamma induced protein 10, macrophage inflammatory protein 3 alpha (MIP-3α) and E-selectin (P=0.01). Adverse events were mild. In conclusion, supplementation with this probiotic combination was safe and resulted in significant modulation of PBMC limited immune response to TLR7/8 agonist R848 and in levels of MPIF-1 and MIP-3α. The anti-inflammatory effect may be one mechanism by which probiotics modulate the immune system however further study is needed.


2013 ◽  
Vol 91 (5) ◽  
pp. 353-361 ◽  
Author(s):  
Issaka Yougbaré ◽  
Gilles Boire ◽  
Michelle Roy ◽  
Claire Lugnier ◽  
Éric Rouseau

Systemic lupus erythematosus (SLE) is a polymorphic and multigenic autoimmune disease that evolves into progressive and chronic inflammation of multiple joints and organs. Phosphorylation and activation of p38 MAPK, along with the resulting overproduction of interleukin (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α is a hallmark of inflammatory disorders. Here, we investigated the anti-inflammatory pathway modulated by NCS 613, a specific PDE4 inhibitor, on human peripheral blood mononuclear cells (PBMCs) from 5 healthy donors and 12 SLE patients. PDE4 subtypes, p38 MAPK, and IκBα protein levels were analyzed by Western blot, while NF-κB and PDE4B immunostaining was assessed in control and lipopolysaccharide (LPS) -pretreated PBMCs. Proinflammatory cytokines were quantified by ELISA, while IL-1β mRNA was resolved by RT–qPCR. NCS 613 treatment decreased PDE4B and upregulated PDE4C in human PBMCs from healthy donors and SLE patients. LPS stimulation increased p38 MAPK phosphorylation and NF-κB translocation to the nucleus, which was abolished by NCS 613 treatment. Concomitantly, NCS 613 restored IκBα detection levels in human PBMCs from both healthy donors and SLE patients. This compound also abolished LPS-induced inflammation in PBMCs by reducing IL-6, IL-8, and TNF-α cytokines. NCS 613 is a small molecule displaying anti-inflammatory properties that may provide an alternative or complementary strategy for SLE management.


2021 ◽  
Vol 89 (6) ◽  
Author(s):  
Mariam Bakshi ◽  
Deborah Hebert ◽  
Connor Gulbronson ◽  
Gary Bauchan ◽  
Wenbin Tuo ◽  
...  

ABSTRACT Ostertagia ostertagi is an abomasal parasite with significant economic impact on the cattle industry. Early host immune responses are poorly understood. Here, we examined time course expression of Toll-like receptors (TLRs) in peripheral blood mononuclear cells (PBMC) during infection where PBMC macrophages (Mϕ) generated both pro- and anti-inflammatory responses when incubated with excretory/secretory products (ESP) from fourth-stage larvae (OoESP-L4) or adult worms (OoESP-Ad). First, changes in cell morphology clearly showed that both OoESP-L4 and OoESP-Ad activated PBMC-Mϕ in vitro, resulting in suppressed CD40 and increased CD80 expression. Expression of mRNAs for TLR1, -4, -5, and -7 peaked 7 days postinfection (dpi) (early L4), decreased by 19 dpi (postemergent L4 and adults) and then increased at 27 dpi (late adults). The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) (transcript and protein) increased in the presence of OoESP-Ad, and the anti-inflammatory cytokine interleukin 10 (IL-10) (protein) decreased in the presence of OoESP-L4 or OoESP-Ad; however, IL-10 mRNA was upregulated, and IL-6 (protein) was downregulated by OoESP-L4. When PBMC-Mϕ were treated with ligands for TLR4 or TLR5 in combination with OoESP-Ad, the transcripts for TNF-α, IL-1, IL-6, and IL-10 were significantly downregulated relative to treatment with TLR4 and TLR5 ligands only. However, the effects of TLR2 ligand and OoESP-Ad were additive, but only at the lower concentration. We propose that O. ostertagi L4 and adult worms utilize competing strategies via TLRs and Mϕ to confuse the immune system, which allows the worm to evade the host innate responses.


2017 ◽  
Vol 242 (12) ◽  
pp. 1279-1286 ◽  
Author(s):  
Aaron L Slusher ◽  
Yoshimi Shibata ◽  
Michael Whitehurst ◽  
Arun Maharaj ◽  
Justin M Quiles ◽  
...  

The purpose of this study was to determine whether obesity would reduce the capacity of peripheral blood mononuclear cells (PBMCs) to produce the anti-inflammatory protein pentraxin 3 (PTX3) in response to ex vivo stimulation with lipopolysaccharide (LPS), and if acute aerobic exercise would enhance this PTX3 production capacity. In addition, the inter-relationships of LPS-induced PTX3 with the inflammatory cytokines (interleukin 6 [IL-6], IL-10, and tumor necrosis factor alpha) were examined. Twenty-one healthy subjects (10 obese and 11 normal-weight) performed an acute bout of aerobic exercise at 75% VO2max. The capacity of PBMCs to produce PTX3 ex vivo following LPS stimulation was the same in obese and normal-weight subjects at rest, and decreased equally in both subject groups following acute aerobic exercise. This is in contrast to plasma PTX3, which is lower in obese subjects at rest and increased equally in both obese and normal-weight subjects following exercise. In addition, ex vivo PTX3 production was positively associated with IL-6 and IL-10 in response to acute aerobic exercise ( r = 0.686, P = 0.020; r = 0.744, P = 0.009, respectively) in normal-weight, but not in obese individuals ( r = 0.429, P = 0.249; r = 0.453, P = 0.189, respectively). These findings indicate that concentrations of PTX3 observed in plasma are relatively independent of those produced by PBMCs ex vivo and the mechanisms associated with PTX3-mediated anti-inflammatory signaling may differ during obesity. Impact statement Our laboratory has previously demonstrated that obese individuals present with lower plasma concentrations of the anti-inflammatory protein pentraxin 3 (PTX3), whereas acute aerobic exercise increases plasma PTX3 levels similarly compared to normal-weight individuals. As a follow-up, the present study demonstrates that PBMCs isolated from obese and normal-weight individuals produce comparable amounts of PTX3 ex vivo in response to lipopolysaccharide (LPS). Furthermore, given that acute aerobic exercise reduced the ex vivo production of PTX3 in both groups, our results clearly indicate that plasma PTX3 levels are relatively independent of those produced by PBMCs ex vivo. In addition, our findings suggest that the mechanisms associated with PTX3-mediated production of the anti-inflammatory cytokine interleukin 10 may be impaired in obese individuals, and thus provides a key finding necessary for the elucidation of PTX3’s role in the mediation of anti-inflammatory profiles and the subsequent amelioration of inflammatory disease during obesity.


Sign in / Sign up

Export Citation Format

Share Document