Glutamine regulates Caco-2 cell tight junction proteins

2004 ◽  
Vol 287 (3) ◽  
pp. G726-G733 ◽  
Author(s):  
Nan Li ◽  
Patricia Lewis ◽  
Don Samuelson ◽  
Kellym Liboni ◽  
Josef Neu

Intestinal epithelial tight junction (TJ) barrier dysfunction may lead to inflammation and mucosal injury. Glutamine (GLN) plays a role in maintenance of intestinal barrier function in various animal models and critically ill humans. Recent evidence from intestinal cell monolayers indicates that GLN maintains transepithelial resistance and decreases permeability. The mechanisms of these effects remain undefined. We hypothesized that GLN affects proteins involved in the intercellular junctional complex. GLN availability was controlled in Caco-2 monolayers by addition to the medium and treatment with methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Expression of TJ proteins, claudin-1, occludin, and zonula occluden (ZO)-1 was measured by immunoblotting. Localization of TJ proteins was evaluated by immunofluorescence light microscopy. Structure of TJ was determined by transmission electron microscopy (TEM). Deprivation of GLN decreased claudin-1, occludin, and ZO-1 protein expression and caused a disappearance of perijunctional claudin-1 and a reduction of occludin but had no effect on ZO-1. TEM revealed that MSO-treated cells in the absence of GLN formed irregular junctional complexes between the apical lateral margins of adjoining cells. These findings indicate that TJ protein expression and cellular localization in Caco-2 cell monolayers rely on GLN. This mechanism may similarly relate to GLN-mediated modulation of intestinal barrier function in stressed animals and humans.

2021 ◽  
Vol 12 ◽  
Author(s):  
Nina A. Hering ◽  
Julia Luettig ◽  
Britta Jebautzke ◽  
Jörg D. Schulzke ◽  
Rita Rosenthal

Scope: Ellagitannins are polyphenols found in numerous fruits, nuts and seeds. The elagitannin punicalagin and its bioactive metabolites ellagic acid and urolithins are discussed to comprise a high potential for therapeutically or preventive medical application such as in intestinal diseases. The present study characterizes effects of punicalagin, ellagic acid and urolithin A on intestinal barrier function in the absence or presence of the proinflammatory cytokine tumor necrosis factor-α (TNFα).Methods and Results: Transepithelial resistance (TER), fluorescein and ion permeability, tight junction protein expression and signalling pathways were examined in Caco-2 and HT-29/B6 intestinal epithelial cell models. Punicalagin had less or no effects on barrier function in both cell models. Ellagic acid was most effective in ileum-like Caco-2 cells, where it increased TER and reduced fluorescein and sodium permeabilities. This was paralleled by myosin light chain kinase two mediated expression down-regulation of claudin-4, -7 and -15. Urolithin A impeded the TNFα-induced barrier loss by inhibition of claudin-1 and -2 protein expression upregulation and claudin-1 delocalization in HT-29/B6.Conclusion: Ellagic acid and urolithin A affect intestinal barrier function in distinct ways. Ellagic acid acts preventive by strengthening the barrier per se, while urolithin A protects against inflammation-induced barrier dysfunction.


2018 ◽  
Vol 46 (5) ◽  
pp. 1779-1792 ◽  
Author(s):  
Zhiping Xiao ◽  
Lujie Liu ◽  
Wenjing Tao ◽  
Xun Pei ◽  
Geng Wang ◽  
...  

Background/Aims: The intestinal mucosa forms a physical and metabolic barrier against the diffusion of pathogens, toxins, and allergens from the lumen into the circulatory system. Early weaning, a critical phase in swine production, can compromise intestinal barrier function through mucosal damage and alteration of tight junction integrity Maintenance of intestinal barrier function plays a pivotal role in optimum gastrointestinal health. In this study, we investigated the effects of Clostridium tyrobutyricum (C.t) on intestinal barrier dysfunction induced by lipopolysaccharide (LPS) and the underlying mechanisms involved in intestinal barrier protection. Methods: A Transwell model of IPEC-J2 cells was used to imitate the intestinal barrier. Fluorescence microscopy and flow cytometry were used to evaluate apoptosis. Real-time PCR was used to detect apoptosis-related genes and the downstream genes of the p38/c-Jun N-terminal kinase (JNK) signaling pathways. Western blotting was used to measure the expressions of tight junction proteins and mitogen-activated protein kinases. Results: C.t efficiently maintained trans-epithelium electrical resistance values and intestinal permeability after LPS-induced intestinal barrier disruption. The expressions of tight junction proteins (ZO-1, claudin-1, and occludin) were promoted when IPEC-J2 cells were treated with C.t. Fluorescence imaging and flow cytometry revealed that C.t qualitatively and quantitatively inhibited LPS-induced cell apoptosis. C.t also increased the relative expression of the anti-apoptotic gene Bcl-2 and decreased that of the apoptotic genes Bax and caspase-3/-8. Moreover, the protective effect of C.t on damaged intestinal cell models was associated with suppression of p38 and JNK phosphorylation, negative regulation of the relative expressions of downstream genes including AP-1, ATF-2, ELK-1, and p53, and activation of Stat3 expression. Conclusions: These findings indicate that C.t may promote intestinal integrity, suggesting a novel probiotic effect on intestinal barrier function.


2011 ◽  
Vol 106 (6) ◽  
pp. 870-877 ◽  
Author(s):  
Julia B. Ewaschuk ◽  
Gordon K. Murdoch ◽  
Ian R. Johnson ◽  
Karen L. Madsen ◽  
Catherine J. Field

The weaning period is associated with an increased prevalence of gastrointestinal infection in many species. Glutamine (Gln) has been shown to improve intestinal barrier function and immune function in both in vivo and in vitro models. The objective of the present study was to determine the effect of dietary Gln supplementation on intestinal barrier function and intestinal cytokines in a model of Escherichia coli infection. We randomised 21-d-old piglets (n 20) to nutritionally complete isonitrogenous diets with or without Gln (4·4 %, w/w) for 2 weeks. Intestinal loops were isolated from anaesthetised pigs and inoculated with either saline or one of the two E. coli (K88AC or K88 wild-type)-containing solutions. Intestinal tissue was studied for permeability, cytokine expression, fluid secretion and tight-junction protein expression. Animals receiving Gln supplementation had decreased potential difference (PD) and short-circuit current (Isc) in E. coli-inoculated intestinal loops (PD 0·628 (sem 0·151) mV; Isc 13·0 (sem 3·07) μA/cm2) compared with control-fed animals (PD 1·36 (sem 0·227) mV; Isc 22·4 (sem 2·24) μA/cm2). Intestinal tissue from control, but not from Gln-supplemented, animals responded to E. coli with a significant increase in mucosal cytokine mRNA (IL-1β, IL-6, transforming growth factor-β and IL-10). Tight-junction protein expression (claudin-1 and occludin) was reduced with exposure to E. coli in control-fed animals and was not influenced in Gln-supplemented piglets. Gln supplementation may be useful in reducing the severity of weaning-related gastrointestinal infections, by reducing the mucosal cytokine response and altering intestinal barrier function.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 522
Author(s):  
Eun Ae Kang ◽  
Hye-In Choi ◽  
Seung Wook Hong ◽  
Seokwoo Kang ◽  
Hyeon-Young Jegal ◽  
...  

The aim of this study was to demonstrate the anti-inflammatory effect of Lactobacillus kefirgranum PRCC-1301-derived extracellular vesicles (PRCC-1301 EVs) on intestinal inflammation and intestinal barrier function. Human intestinal epithelial cells (IECs) Caco-2 were treated with PRCC-1301 EVs and then stimulated with dextran sulfate sodium (DSS). Real-time RT-PCR revealed that PRCC-1301 EVs inhibited the expression of pro-inflammatory cytokines in Caco-2 cells. PRCC-1301 EVs enhanced intestinal barrier function by maintaining intestinal cell integrity and the tight junction. Loss of Zo-1, claudin-1, and occludin in Caco-2 cells and the colitis tissues was recovered after PRCC-1301 EVs treatment, as evidenced by immunofluorescence analysis. Acute murine colitis was induced using 4% DSS and chronic colitis was generated in piroxicam-treated IL-10-/- mice. PRCC-1301 EVs attenuated body weight loss, colon shortening, and histological damage in acute and chronic colitis models in mice. Immunohistochemistry revealed that phosphorylated NF-κB p65 and IκBα were reduced in the colon tissue sections treated with PRCC-1301 EVs. Our results suggest that PRCC-1301 EVs may have an anti-inflammatory effect on colitis by inhibiting the NF-κB pathway and improving intestinal barrier function.


Author(s):  
Jianping Yang ◽  
Xinfeng Li ◽  
Xinlei Wang ◽  
Xin Wen ◽  
Tongtong Zhang ◽  
...  

Background: The intestinal mucosal epithelium acts as a physical and biochemical barrier and plays an important role in regulating of barrier function and immune homeostasis. Methylmethionine sulfonium chloride (MMSC) is a multifaceted amino acid that is critical to the normal physiology of the gastrointestinal tract. The present study investigated the effects of extracellular MMSC on intestinal epithelial cell line (IPEC-J2). Methods: IPEC-J2 cells were treated with 0.1, 0.5 and 1 mM MMSC, respectively for an additional 24 h. CCK-8 assay was used to evaluate cell proliferation. The cell Annexin V-FITC/PI apoptosis were analyzed by flow cytometry (FCM) method. The mRNA transcript and protein expression levels of tight junction proteins in IPEC-J2 cells were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB). Result: The results showed that MMSC could stimulate IPEC-J2 cells proliferation and inhibit cell apoptosis. In addition, the RT-qPCR and WB results indicated that 0.5 mM MMSC significantly increased the mRNA and protein expression of tight junction proteins, including occludin, claudin-1 and zonula occludin-1 (Zo-1). These findings may provide valuable information to investigate further the possible mechanism and function of MMCS on the intestinal barrier function.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hee Soon Shin ◽  
Sun Young Jung ◽  
Su Yeon Back ◽  
Jeong-Ryong Do ◽  
Dong-Hwa Shon

Fructus Arctiiis used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect ofF. Arctiiextract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component ofF. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment ofF. Arctiiincreased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component ofF. Arctiiincreased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed thatF. Arctiicould enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin fromF. Arctiicould contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.


Author(s):  
Zachary M Slifer ◽  
B Radha Krishnan ◽  
Jay Madan ◽  
Anthony T Blikslager

Larazotide acetate (LA) is a single-chain peptide of eight amino acids that acts as a tight junction regulator to restore intestinal barrier function. LA is currently being studied in phase 3 clinical trials and is orally administered to adult patients with celiac disease as an adjunct therapeutic to enhance intestinal barrier function that has been disrupted by gliadin-induced immune reactivity. Mechanistically, LA is thought to act as a zonulin antagonist to reduce zonulin-induced increases in barrier permeability and has been associated with the redistribution and rearrangement of tight junction proteins and actin filaments to restore intestinal barrier function. More recently, LA has been linked to inhibition of myosin light chain kinase, which likely reduces tension on actin filaments, thereby facilitating tight junction closure. Small (rodent) and large (porcine) animal studies have been conducted that demonstrate the importance of LA as a tight junction regulatory peptide in conditions other than celiac disease, including collagen-induced arthritis in mice and intestinal ischemic injury in pigs.


Sign in / Sign up

Export Citation Format

Share Document