Foxl1-deficient mice exhibit aberrant epithelial cell positioning resulting from dysregulated EphB/EphrinB expression in the small intestine

2006 ◽  
Vol 291 (1) ◽  
pp. G163-G170 ◽  
Author(s):  
Masumi Takano-Maruyama ◽  
Koji Hase ◽  
Hiroshi Fukamachi ◽  
Yasutaka Kato ◽  
Haruhiko Koseki ◽  
...  

The winged helix transcription factor Foxl1, expressed in the gut mesenchyme, regulates epithelial cell proliferation and differentiation through the Wnt/β-catenin pathway. To better understand the role of Foxl1 in epithelial morphogenesis, we examined the tissue structure and positioning of epithelial cells in the small intestine of Foxl1-deficient mice. The small intestine of Foxl1-deficient mice manifested aberrant crypt structure, including widely distributed Paneth cells, which coincided with the ectopic and increased expression of EphB2 and EphB3, which are key regulators of epithelial cell positioning. Furthermore, real-time quantitative PCR indicated that a subset of Wnt family genes was highly expressed in the gut mesenchyme of Foxl1-deficient mice compared with that of wild-type mice. Such an increase in Wnt expression was remarkable in the mesenchyme, where the aberrant Paneth cell positioning was observed by in situ hybridization. Foxl1 plays an important role in the maintenance of crypt architecture and epithelial cell positioning through the mesenchymal-epithelial interaction in the small intestine. This interaction is essential for the normal regulation of the Wnt/β-catenin pathway and the subsequent EphB/EphrinB expression.

2005 ◽  
Vol 93 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Simmy Thomas ◽  
Ramamoorthy Prabhu ◽  
Kunissery A. Balasubramanian

Vitamin A (retinol) is essential for epithelial cell growth, differentiation and proliferation. The absorption of retinol occurs in the small intestine, and the metabolism of this vitamin is not well studied in this organ. The intestinal epithelium has a high rate of cell proliferation and differentiation, and the present study looked at the level of retinoids and metabolizing enzymes involved in their interconversion along the villus–crypt axis under normal conditions. Intestine was removed from control rats, and enterocytes at various stages of maturation and differentiation were quantified by the metal chelation method. Using HPLC, various retinoid concentrations in the cell homogenate and the metabolizing enzymes in the cytosol were quantified. The proliferating crypt cells were found to have a higher level of retinoic acid as well as of the enzymes involved in its formation, such as retinaldehyde oxidase and retinol dehydrogenase, compared with the villus cells, suggesting a possible role for this compound in intestinal epithelial cell proliferation and differentiation. The high level of retinol and high retinaldehyde reductase activity in the villus cells suggest the important role played by this enzyme in the conversion of dietary β-carotene to retinol via retinaldehyde. In summary, this study has given for the first time a detailed analysis of the retinoid levels and metabolizing enzymes in different cell populations in the rat small intestinal epithelium.


2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


1988 ◽  
Vol 8 (2) ◽  
pp. 963-973
Author(s):  
J T Holt ◽  
R L Redner ◽  
A W Nienhuis

To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4774
Author(s):  
Giulia Anichini ◽  
Laura Carrassa ◽  
Barbara Stecca ◽  
Fabio Marra ◽  
Chiara Raggi

Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and, along with hepatocellular carcinoma (HCC), is the predominant type of primitive liver cancer in adults. The lack of understanding of CCA biology has slowed down the identification of novel targets and the development of effective treatments. While tumors share some general characteristics, detailed knowledge of specific features is essential for the development of effectively tailored therapeutic approaches. The Hedgehog (HH) signaling cascade regulates stemness biology, embryonal development, tissue homeostasis, and cell proliferation and differentiation. Its aberrant activation has been associated with a variety of solid and hematological human malignancies. Several HH-inhibiting compounds have been indeed developed as potential anticancer agents in different types of tumors, with Smoothened and GLI inhibitors showing the most promising results. Beside its well-established function in other tumors, findings regarding the HH signaling in CCA are still controversial. Here we will give an overview of the most important clinical and molecular features of cholangiocarcinoma, and we will discuss the available evidence of the crosstalk between the HH signaling pathway and the cholangiocarcinoma cell biology.


2021 ◽  
pp. 1-13
Author(s):  
Yuying Wang ◽  
Rui He ◽  
Anqi Yang ◽  
Rui Guo ◽  
Jie Liu ◽  
...  

BACKGROUND: The effectiveness and availability of conservative therapies for osteonecrosis of the femoral head (ONFH) are limited. Transplantation of bone marrow mesenchymal stem cells (BMSCs) combined with Bio-Oss, which is a good bone scaffold biomaterial for cell proliferation and differentiation, is a new potential therapy. Of note, the expression of miRNAs was significantly modified in cells cultured with Bio-Oss, and MiR-214 was correlated positively with osteonecrosis. Furthermore, miR-214 was upregulated in cells exposed to Bio-Oss. OBJECTIVE: To investigate whether targeting miR-214 further improves the transplantation effect. METHODS: We treated BMSCs with agomiR-214 (a miR-214 agonist), antagomiR-214 (a miR-214 inhibitor), or vehicle, followed by their transplantation into ONFH model rats. RESULTS: Histological and histomorphometric data showed that bone formation was significantly increased in the experimental groups (Bio-Oss and BMSCs treated with antagomiR-214) compared with other groups. CONCLUSIONS: miR-214 participates in the inhibition of osteoblastic bone formation, and the inhibition of miR-214 to bone formation during transplantation therapy with Bio-Oss combined with BMSCs for ONFH.


2019 ◽  
Vol 317 (1) ◽  
pp. C3-C19 ◽  
Author(s):  
Qingyi Ma ◽  
Lubo Zhang ◽  
William J. Pearce

MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21–25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3′-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.


2018 ◽  
Vol 115 (26) ◽  
pp. 6786-6791 ◽  
Author(s):  
Jiaxi Wu ◽  
Huaizhu Wu ◽  
Jinping An ◽  
Christie M. Ballantyne ◽  
Jason G. Cyster

CD11c, also known as integrin alpha X, is the most widely used defining marker for dendritic cells (DCs). CD11c can bind complement iC3b and mediate phagocytosis in vitro, for which it is also referred to as complement receptor 4. However, the functions of this prominent marker protein in DCs, especially in vivo, remain poorly defined. Here, in the process of studying DC activation and immune responses induced by cells lacking self-CD47, we found that DC capture of CD47-deficient cells and DC activation was dependent on the integrin-signaling adaptor Talin1. Specifically, CD11c and its partner Itgb2 were required for DC capture of CD47-deficient cells. CD11b was not necessary for this process but could partially compensate in the absence of CD11c. Mice with DCs lacking Talin1, Itgb2, or CD11c were defective in supporting T-cell proliferation and differentiation induced by CD47-deficient cell associated antigen. These findings establish a critical role for CD11c in DC antigen uptake and activation in vivo. They may also contribute to understanding the functional mechanism of CD47-blockade therapies.


Sign in / Sign up

Export Citation Format

Share Document