scholarly journals Multi-omic analysis defines the first microRNA atlas across all small intestinal epithelial lineages and reveals novel markers of almost all major cell types

Author(s):  
Michael Shanahan ◽  
Matt Kanke ◽  
Oyebola O. Oyesola ◽  
Yu-Han Hung ◽  
Kieran Koch-Laskowski ◽  
...  

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely co-transcribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most-enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.

2019 ◽  
Author(s):  
Luigi Grassi ◽  
Osagie G. Izuogu ◽  
Natasha A.N. Jorge ◽  
Denis Seyres ◽  
Mariona Bustamante ◽  
...  

AbstractTranscriptional profiling of hematopoietic cell subpopulations has helped characterize the developmental stages of the hematopoietic system and the molecular basis of malignant and non-malignant blood diseases for the past three decades. The introduction of high-throughput RNA sequencing has increased knowledge of the full repertoire of RNA molecules in hematopoietic cells of different types, without relying on prior gene annotation. Here, we introduce the analysis of the BLUEPRINT consortium gene expression data for mature hematopoietic cells, comprising 90 total RNA and 32 small RNA sequencing experiments, from 27 different cell types. We used these data to describe the transcriptional profile of each we used guided transcriptome assembly to extend the annotation of the transcribed genome, which led to the identification of hundreds of novel non-coding RNA genes, which display a high degree of cell type specificity. We also characterized the expression of circular RNAs and found that these are also highly cell type specific. This resource refines the active transcriptional landscape of mature hematopoietic cells, highlights abundant genes and transcriptional isoforms for each cell type, and provides valuable data and visualisation tools for the scientific community working on hematological development and diseases.


2019 ◽  
Author(s):  
Zhenyuan Yu ◽  
Ansi Lu ◽  
Jiwen Cheng ◽  
Zengnan Mo

Abstract Background The liver is an important digestive organ in the human body, which has a variety of physiological functions. Once the liver occurs dysfunction, it may indicate the occurrence of liver disease. Genome-wide association studies (GWAS) have identified a lot of genetic variants which are associated with liver disease. However, it is not clear that the genes with variants in which have cell type specificity. Methods To investigate the association between liver cell types and liver disease, we used a new method that integrate the genes associated with liver diseases identified by GWAS and single-cell RNA sequencing (scRNA-seq) data for analysis. We applied the scRNA-seq data from the GEO database, which included 20 cell types from human liver and 9 cell types from mouse liver after reclassifying. The susceptibility genes of liver diseases were downloaded from GWAS catalog and matched to the results of liver scRNA-seq. Results We found that most susceptibility genes of chronic hepatitis B virus (HBV) infection were expressed in human B cells. And the susceptibility genes of biomarkers of liver dysfunction showed similar cell type specificity in human and mouse. Last, we discovered that primary liver disease phenotypes may be due to mutations in multiple cell types. Conclusions Collectively, this study localized the susceptibility genes of liver diseases to specific cell types and provided clues for the in-depth study of liver diseases at the transcriptome level.


2002 ◽  
Vol 76 (24) ◽  
pp. 12783-12791 ◽  
Author(s):  
Christopher R. Logg ◽  
Aki Logg ◽  
Robert J. Matusik ◽  
Bernard H. Bochner ◽  
Noriyuki Kasahara

ABSTRACT The inability of replication-defective viral vectors to efficiently transduce tumor cells in vivo has prevented the successful application of such vectors in gene therapy of cancer. To address the need for more efficient gene delivery systems, we have developed replication-competent retroviral (RCR) vectors based on murine leukemia virus (MLV). We have previously shown that such vectors are capable of transducing solid tumors in vivo with very high efficiency. While the natural requirement of MLV infection for cell division imparts a certain degree of specificity for tumor cells, additional means for confining RCR vector replication to tumor cells are desirable. Here, we investigated the parameters critical for successful tissue-specific transcriptional control of RCR vector replication by replacing various lengths of the MLV enhancer/promoter with sequences derived either from the highly prostate-specific probasin (PB) promoter or from a more potent synthetic variant of the PB promoter. We assessed the transcriptional specificity of the resulting hybrid long terminal repeats (LTRs) and the cell type specificity and efficiency of replication of vectors containing these LTRs. Incorporation of PB promoter sequences effectively restricted transcription from the LTR to prostate-derived cells and imparted prostate-specific RCR vector replication but required the stronger synthetic promoter and retention of native MLV sequences in the vicinity of the TATA box for optimal replicative efficiency and specificity. Our results have thus identified promoter strength and positioning within the LTR as important determinants for achieving both high transduction efficiency and strict cell type specificity in transcriptionally targeted RCR vectors.


1985 ◽  
Vol 5 (2) ◽  
pp. 419-421
Author(s):  
K M Zezulak ◽  
H Green

During the differentiation of preadipose 3T3 cells into adipose cells, the mRNAs for three proteins increase strikingly in abundance. To determine the degree of cell-type specificity in the expression of these mRNAs, we estimated their abundances in several nonadipose tissues of the mouse. None of these mRNAs was strictly confined to adipocytes, but the ensemble of three mRNAs was rather specific to adipocytes. Insofar as is revealed by these three markers, the distinctive phenotype of adipocytes is the result of the enhanced expression of a number of genes, none of which is completely silent in all other cell types.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2020 ◽  
Author(s):  
Emily A. McGlade ◽  
Gerardo G. Herrera ◽  
Kalli K. Stephens ◽  
Sierra L. W. Olsen ◽  
Sarayut Winuthayanon ◽  
...  

AbstractOne of the endogenous estrogens, 17β-estradiol (E2) is a female steroid hormone secreted from the ovary. It is well established that E2 causes biochemical and histological changes in the uterus. The oviduct response to E2 is virtually unknown in an in vivo environment. In this study, we assessed the effect of E2 on each oviductal cell type, using an ovariectomized-hormone-replacement mouse model, single cell RNA-sequencing (scRNA-seq), in situ hybridization, and cell-type-specific deletion in mice. We found that each cell type in the oviduct responded to E2 distinctively, especially ciliated and secretory epithelial cells. The treatment of exogenous E2 did not drastically alter the transcriptomic profile from that of endogenous E2 produced during estrus. Moreover, we have identified and validated genes of interest in our datasets that may be used as cell- and region-specific markers in the oviduct. Insulin-like growth factor 1 (Igf1) was characterized as an E2-target gene in the mouse oviduct and was also expressed in human Fallopian tubes. Deletion of Igf1 in progesterone receptor (Pgr)-expressing cells resulted in female subfertility, partially due to an embryo developmental defect and embryo retention within the oviduct. In summary, we have shown that oviductal cell types are differentially regulated by E2 and support gene expression changes that are required for normal embryo development and transport in mouse models.


2018 ◽  
Author(s):  
Avi Z. Rosenberg ◽  
Carrie Wright ◽  
Karen Fox-Talbot ◽  
Anandita Rajpurohit ◽  
Courtney Williams ◽  
...  

AbstractAccurate, RNA-seq based, microRNA (miRNA) expression estimates from primary cells have recently been described. However, this in vitro data is mainly obtained from cell culture, which is known to alter cell maturity/differentiation status, significantly changing miRNA levels. What is needed is a robust method to obtain in vivo miRNA expression values directly from cells. We introduce expression microdissection miRNA small RNA sequencing (xMD-miRNA-seq), a method to isolate cells directly from formalin fixed paraffin-embedded (FFPE) tissues. xMD-miRNA-seq is a low-cost, high-throughput, immunohistochemistry-based method to capture any cell type of interest. As a proof-of-concept, we isolated colon epithelial cells from two specimens and performed low-input small RNA-seq. We generated up to 600,000 miRNA reads from the samples. Isolated epithelial cells, had abundant epithelial-enriched miRNA expression (miR-192; miR-194; miR-200b; miR-200c; miR-215; miR-375) and overall similar miRNA expression patterns to other epithelial cell populations (colonic enteroids and flow-isolated colon epithelium). xMD-derived epithelial cells were generally not contaminated by other adjacent cells of the colon as noted by t-SNE analysis. xMD-miRNA-seq allows for simple, economical, and efficient identification of cell-specific miRNA expression estimates. Further development will enhance rapid identification of cell-specific miRNA expression estimates in health and disease for nearly any cell type using archival FFPE material.


Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Kenneth Pham ◽  
Neda Masoudi ◽  
Eduardo Leyva-Díaz ◽  
Oliver Hobert

Abstract We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4–10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.


2018 ◽  
Author(s):  
Caroline Fecher ◽  
Laura Trovò ◽  
Stephan A. Müller ◽  
Nicolas Snaidero ◽  
Jennifer Wettmarshausen ◽  
...  

AbstractMitochondria vary in morphology and function in different tissues, however little is known about their molecular diversity among cell types. To investigate mitochondrial diversity in vivo, we developed an efficient protocol to isolate cell type-specific mitochondria based on a new MitoTag mouse. We profiled the mitochondrial proteome of three major neural cell types in cerebellum and identified a substantial number of differential mitochondrial markers for these cell types in mice and humans. Based on predictions from these proteomes, we demonstrate that astrocytic mitochondria metabolize long-chain fatty acids more efficiently than neurons. Moreover, we identified Rmdn3 as a major determinant of ER-mitochondria proximity in Purkinje cells. Our novel approach enables exploring mitochondrial diversity on the functional and molecular level in many in vivo contexts.


Author(s):  
Shivangi Agarwal ◽  
Yashwanth R Sudhini ◽  
Onur K Polat ◽  
Jochen Reiser ◽  
Mehmet Mete Altintas

Kidneys, one of the vital organs in our body, are responsible for maintaining whole-body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in-depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the sub-regions. Recent developments in labeling, tracing, and imaging techniques enabled us to mark, monitor and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we have summarized different cell types, specific markers that are uniquely associated with those cell types, and their distribution in kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in the cell-type specific markers. Thus, the term "cell marker" might be imprecise and sub-optimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although, the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to the researchers, we acknowledge that the list may not be necessarily exhaustive.


Sign in / Sign up

Export Citation Format

Share Document