scholarly journals Role of microRNA-210-3p in hepatitis B virus-related hepatocellular carcinoma

2020 ◽  
Vol 318 (3) ◽  
pp. G401-G409
Author(s):  
Asahiro Morishita ◽  
Koji Fujita ◽  
Hisakazu Iwama ◽  
Taiga Chiyo ◽  
Shintaro Fujihara ◽  
...  

Hepatitis B virus (HBV)-related hepatocarcinogenesis is not necessarily associated with the liver fibrotic stage and is occasionally seen at early fibrotic stages. MicroRNAs (miRNAs) are essentially 18- to 22-nucleotide-long endogenous noncoding RNAs. Aberrant miRNA expression is a common feature of various human cancers. The aberrant expression of specific miRNAs has been shown in hepatocellular carcinoma (HCC) tissue compared with nontumor tissue. Thus, we examined targetable miRNAs as a potential new biomarker related to the high risk of HBV-related hepatocarcinogenesis, toward the prevention of cancer-related deaths. HCC tissue samples from 29 patients who underwent hepatectomy at our hospital in 2002–2013 were obtained. We extracted the total RNA and analyzed it by microRNA array, real-time RT-PCR, and three comparisons: 1) HBV-related HCC and adjacent nontumor tissue, 2) HCV-related HCC and adjacent nontumor tissue, and 3) non-HBV-, non-HCV-related HCC and adjacent nontumor tissue. We also performed a functional analysis of miRNAs specific for HBV-related HCC by using HBV-positive HCC cell lines. MiR-210-3p expression was significantly increased only in the HBV-related HCC tissue samples. MiR-210-3p expression was upregulated, and the levels of its target genes were reduced in the HBV-positive HCC cells. The inhibition of miR-210-3p enhanced its target gene expression in the HBV-positive HCC cells. In addition, miR-210-3p regulated the HBx expression in HBV-infected Huh7/NTCP cells. The enhanced expression of miR-210-3p was detected specifically in HBV-related HCC and regulated various target genes, including HBx in the HBV-positive HCC cells. MiR-210-3p might, thus, be a new biomarker for the risk of HBV-related HCC. NEW & NOTEWORTHY Our present study demonstrated that miR-210-3p is the only microRNA with enhanced expression in HBV-related HCC, and the enhanced expression of miR-210-3p upregulates HBx expression. Therefore, miR-210-3p might be a pivotal biomarker of HBV-related hepatocarcinogenesis, and the inhibition of miR-210-3p could prevent inducing hepatocarcinogenesis related to HBV infection.

RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39904-39913
Author(s):  
Fei Tang ◽  
Fengmei Wang ◽  
Hongmin Lv ◽  
Huiling Xiang ◽  
Yi Liu ◽  
...  

MiR-1271 suppressed HBV-related HCC cells development by downregulating SIRT1.


2021 ◽  
Author(s):  
Shu-Xiang Wu ◽  
Shuang-Shuang Ye ◽  
Yu-Xiang Hong ◽  
Yan Chen ◽  
Biao Wang ◽  
...  

Hepatocellular carcinoma (HCC) is a hypervascular tumor and accumulating evidence has indicated that stimulation of angiogenesis by HBV may contribute to HCC malignancy. The small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV viral protein and has a close clinical association with HCC, however, whether SHBs contributes to HCC angiogenesis remains unknown. This study reports that forced expression of SHBs in HCC cells promoted xenograft tumor growth and increased the microvessel density (MVD) within the tumors. Consistently, HBsAg was also positively correlated with MVD count in HCC patients’ specimens. The conditioned media from the SHBs-transfected HCC cells increased the capillary tube formation and migration of human umbilical vein endothelial cells (HUVECs). Intriguingly, overexpression of SHBs increased VEGFA expression at both mRNA and protein levels. A higher VEGFA expression level was also observed in the xenograft tumors transplanted with SHBs-expressing HCC cells and in HBsAg-positive HCC tumor tissues as compared to their negative controls. As expected, in the culture supernatants, the secretion of VEGFA was also significantly enhanced from HCC cells expressing SHBs, which promoted HUVECs migration and vessel formation. Furthermore, all the three unfolded protein response (UPR) sensors IRE1α, PERK and ATF6 associated with endoplasmic reticulum (ER) stress were found activated in the SHBs-expressing cells and correlated with VEGFA protein expression and secretion. Taken together, these results suggest an important role of SHBs in HCC angiogenesis and may highlight a potential target for preventive and therapeutic intervention of HBV-related HCC and its malignant progression. IMPORTANCE Chronic hepatitis B virus infection is one of the important risk factors for the development and progression of hepatocellular carcinoma (HCC). HCC is characteristic of hypervascularization even at early phases of the disease due to overexpression of angiogenic factors like vascular endothelial growth factor-A (VEGFA). However, a detailed mechanism in the HBV-induced angiogenesis remains to be established. In this study, we demonstrate for the first time that the most abundant HBV viral protein, i.e. small surface antigens (SHBs) can enhance the angiogenic capacity of HCC cells by upregulation of VEGFA expression both in vitro and in vivo . Mechanistically, SHBs induced endoplasmic reticulum (ER) stress which consequently activated unfolded protein response (UPR) signaling to increase VEGFA expression and secretion. This study suggests that SHBs plays an important pro-angiogenic role in HBV-associated HCC and may represent a potential target for anti-angiogenic therapy in the HCC.


2014 ◽  
Vol 92 (2) ◽  
pp. 152-162 ◽  
Author(s):  
Yanrui Sheng ◽  
Shijia Ding ◽  
Ke Chen ◽  
Juan Chen ◽  
Sen Wang ◽  
...  

MicroRNA-101(miR-101) has been shown to be down-regulated in hepatocellular carcinoma (HCC). The hepatitis B virus (HBV) is a major risk factor in the development and progression of HCC. However, the correlation between HBV and miR-101 has not yet been fully elucidated. In this study, we reported that HBV could repress miR-101-3p by inhibiting its promoter activity and identified the potential effects of miR-101-3p on some important biological properties of HCC cells by targeting Rap1b. Dual-luciferase reporter assays showed that HBV down-regulated miR-101-3p by inhibiting its promoter activity. Down-regulation of miR-101-3p promoted cell proliferation, migration, and reduced apoptosis, and resulted in up-regulation of Rap1b, while overexpression of miR-101-3p inhibited these processes. Moreover, overexpression of Rap1b was able to reverse the suppressed cell proliferation and migration mediated by miR-101-3p. Our data showed that HBV down-regulated miR-101-3p expression by inhibiting its promoter activity, which resulted in up-regulation of Rap1b, and down-regulation of miR-101-3p or up-regulation of Rap1b promoted proliferation and migration of HCC cells. This provides a new understanding of the mechanism of HBV-related HCC pathogenesis and the potential application of miR-101-3p in cancer therapy.


Author(s):  
Wenbiao Chen ◽  
Jingjing Jiang ◽  
Lan Gong ◽  
Zheyue Shu ◽  
Dairong Xiang ◽  
...  

Abstract Background Hepatitis B virus (HBV) infection is a crucial risk factor for hepatocellular carcinoma (HCC). However, its underlying mechanism remains understudied. Methods Microarray analysis was conducted to compare the genes and miRNAs in liver tissue from HBV-positive and HBV-negative HCC patients. Biological functions of these biomarkers in HBV-related HCC were validated via in vitro and in vivo experiments. Furthermore, we investigated the effect of HBV on the proliferation and migration of tumor cells in HBV-positive HCC tissue. Bioinformatics analysis was then performed to validate the clinical value of the biomarkers in a large HCC cohort. Results We found that a gene, MINPP1 from the glycolytic bypass metabolic pathway, has an important biological function in the development of HBV-positive HCC. MINPP1 is down-regulated in HBV-positive HCC and could inhibit the proliferation and migration of the tumor cells. Meanwhile, miRNA-30b-5p was found to be a stimulator for the proliferation of tumor cell through glycolytic bypass in HBV-positive HCC. More importantly, miRNA-30b-5p could significantly downregulate MINPP1 expression. Metabolic experiments showed that the miRNA-30b-5p/MINPP1 axis is able to accelerate the conversion of glucose to lactate and 2,3-bisphosphoglycerate (2,3-BPG). In the HBV-negative HCC cells, miRNA-30b-5p/MINPP1 could not regulate the glycolytic bypass to promote the tumorigenesis. However, once HBV was introduced into these cells, miRNA-30b-5p/MINPP1 significantly enhanced the proliferation, migration of tumor cells, and promoted the glycolytic bypass. We further revealed that HBV infection promoted the expression of miRNA-30b-5p through the interaction of HBV protein P (HBp) with FOXO3. Bioinformatics analysis on a large cohort dataset showed that high expression of MINPP1 was associated with favorable survival of HBV-positive HCC patients, which could lead to a slower progress of this disease. Conclusion Our study found that the HBp/FOXO3/miRNA-30b-5p/MINPP1 axis contributes to the development of HBV-positive HCC cells through the glycolytic bypass. We also presented miRNA-30b-5p/MINPP1 as a novel biomarker for HBV-positive HCC early diagnosis and a potential pharmaceutical target for antitumor therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yu Huang ◽  
Huasheng Liang ◽  
Chuanxiong He ◽  
Fang Peng

Aberrant expression of RORγ is implicated in cancer development. A previous study identified that RORγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its expression and significance in HCC remain unclear. The central finding of this work is that RORγ was overexpressed in HCC due to its dysfunction of promoter methylation, and hepatitis B virus X protein (HBx) can remarkably induce the expression of RORγ in hepatocellular carcinoma through enhancing the transcriptional function. Also, the HBx-induced RORγ could promote the migration and proliferation of hepatoma cells. Hence, these results suggest that RORγ was an important regulator in HCC, and our finding provides new insights into the significance of RORγ in HCC.


2019 ◽  
pp. 113-123 ◽  
Author(s):  
Zhiyuan WEI ◽  
Xiaohe SHEN ◽  
Bing NI ◽  
Gaoxing LUO ◽  
Yi TIAN ◽  
...  

The hepatitis B virus-encoded X (HBX) protein plays important roles in Hepatocellular carcinoma (HCC). Previous studies have demonstrated that HBX can induce alterations in the expression of numerous microRNAs (miRNAs) involved in the carcinogenesis of various tumors. However, the global profile of liver miRNA changes induced by HBX has not been characterized. In this study, we conducted a miRNA microarray analysis to investigate the influence of HBX on the expression of total miRNAs in liver in relation to HCC. Comparative analysis of the data from human normal liver cells (L02) and human HCC cells (HepG2), with or without HBX, identified 19 differentially expressed miRNAs, including 5 with known association to HBX. Target gene prediction for the aberrantly expressed miRNAs identified a total of 304 potential target genes, involved in sundry pathways. Finally, pathway analysis of the HBXinduced miRNAs pathway showed that 5 of the total miRNAs formed an internetwork, suggesting that HBX might exert its pathological effects on hepatic cells through functional synergy with miRNAs that regulated common pathways in liver cells. Therefore, this work provides new insights into the mechanisms of HCC as well as potential diagnostic markers or therapeutic targets for use in clinical management of HCC.


Author(s):  
Ying Li ◽  
Chaomin Wang ◽  
Ting Zhao ◽  
Ranliang Cui ◽  
Linfei Hu ◽  
...  

Background: Hepatitis B virus X protein (HBx) is an indispensable progression factor in hepatocellular carcinoma (HCC). CCL15 could be a peculiar proteomic biomarker of HCC with tumorigenesis and tumor invasion. Objective: The aim of study was to explore the relationship between HBx and CCL15 expression in HCC. Methods: HBV–positive HCC pathological tissue samples and corresponding adjacent non-tumor liver tissues were clearly collected. The expression of HBx and CCL15 was analyzed by immunohistochemistry, real-time polymerase chain reaction (PCR) and western blot analysis in tissues or in vitro. Results: The levels of CCL15 mRNA and protein expression in HCC samples were observably higher than the ones of adjacent non-tumor liver tissues. The CCL15 was significantly associated with the expression of HBx in HBV-positive HCC samples. The up-regulation of HBx induced CCL15 expression in vitro. The high expression score of CCL15 was significant associated with the poor prognosis of HCC patients. Conclusions: The CCL15 expression was observably associated with HBx in HCC patients. The CCL15 may be considered as a indicator in clinical managment of HBV-associated HCC.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yun-Ju Chen ◽  
Pei-Hsuan Chien ◽  
Wen-Shu Chen ◽  
Yu-Fong Chien ◽  
Ya-Ying Hsu ◽  
...  

Hepatitis B virus (HBV) infection accounts for over a half of cases of hepatocellular carcinoma (HCC), the most frequent malignant tumor of the liver. HBV-encoded X (HBx) plays critical roles in HBV-associated hepatocarcinogenesis. However, it is unclear whether and how HBx regulates the expression of epidermal growth factor receptor (EGFR), an important gene for cell growth. Therefore, the study aimed to investigate the association between HBx and EGFR expression. In this study, we found that HBx upregulates miR-7 expression to target 3′UTR of EGFR mRNA, which in turn results in the reduction of EGFR protein expression in HCC cells. HBx-mediated EGFR suppression renders HCC cells a slow-growth behavior. Deprivation of HBx or miR-7 expression or restoration of EGFR expression can increase the growth rate of HCC cells. Our data showed the miR-7-dependent EGFR suppression by HBx, supporting an inhibitory role of HBx in the cell growth of HCC. These findings not only identify miR-7 as a novel regulatory target of HBx, but also suggest HBx-miR-7-EGFR as a critical signaling in controlling the growth rate of HCC cells.


Sign in / Sign up

Export Citation Format

Share Document