scholarly journals Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells

2014 ◽  
Vol 307 (1) ◽  
pp. G66-G76 ◽  
Author(s):  
Hae-Ki Min ◽  
Silvia Sookoian ◽  
Carlos J. Pirola ◽  
Jianfeng Cheng ◽  
Faridoddin Mirshahi ◽  
...  

PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Kazuto Tajiri ◽  
Yukihiro Shimizu

Nonalcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease and shows various inflammatory changes in the liver. Among those inflammatory cells, natural killer T (NKT) cells are found to have a critical role during the disease progression. NKT cells may have a protective role at the early stage with simple steatosis through modification of insulin resistance, whereas they act as a progression factor at the advanced stage with fibrosis. Those processes are thought to depend on interaction between NKT cells and CD1d molecule in the liver.


2020 ◽  
Vol 26 (32) ◽  
pp. 3915-3927 ◽  
Author(s):  
Stefano Ballestri ◽  
Claudio Tana ◽  
Maria Di Girolamo ◽  
Maria Cristina Fontana ◽  
Mariano Capitelli ◽  
...  

: Nonalcoholic fatty liver disease (NAFLD) embraces histopathological entities ranging from the relatively benign simple steatosis to the progressive form nonalcoholic steatohepatitis (NASH), which is associated with fibrosis and an increased risk of progression to cirrhosis and hepatocellular carcinoma. NAFLD is the most common liver disease and is associated with extrahepatic comorbidities including a major cardiovascular disease burden. : The non-invasive diagnosis of NAFLD and the identification of subjects at risk of progressive liver disease and cardio-metabolic complications are key in implementing personalized treatment schedules and follow-up strategies. : In this review, we highlight the potential role of ultrasound semiquantitative scores for detecting and assessing steatosis severity, progression of NAFLD, and cardio-metabolic risk. : Ultrasonographic scores of fatty liver severity act as sensors of cardio-metabolic health and may assist in selecting patients to submit to second-line non-invasive imaging techniques and/or liver biopsy.


Author(s):  
Richard Radun ◽  
Michael Trauner

AbstractNonalcoholic fatty liver disease (NAFLD) has become the most prevalent cause of liver disease, increasingly contributing to the burden of liver transplantation. In search for effective treatments, novel strategies addressing metabolic dysregulation, inflammation, and fibrosis are continuously emerging. Disturbed bile acid (BA) homeostasis and microcholestasis via hepatocellular retention of potentially toxic BAs may be an underappreciated factor in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) as its progressive variant. In addition to their detergent properties, BAs act as signaling molecules regulating cellular homeostasis through interaction with BA receptors such as the Farnesoid X receptor (FXR). Apart from being a key regulator of BA metabolism and enterohepatic circulation, FXR regulates metabolic homeostasis and has immune-modulatory effects, making it an attractive therapeutic target in NAFLD/NASH. In this review, the molecular basis and therapeutic potential of targeting FXR with a specific focus on restoring BA and metabolic homeostasis in NASH is summarized.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1442
Author(s):  
Pau Vancells Lujan ◽  
Esther Viñas Esmel ◽  
Emilio Sacanella Meseguer

NAFLD is the world’s most common chronic liver disease, and its increasing prevalence parallels the global rise in diabetes and obesity. It is characterised by fat accumulation in the liver evolving to non-alcoholic steatohepatitis (NASH), an inflammatory subtype that can lead to liver fibrosis and cirrhosis. Currently, there is no effective pharmacotherapeutic treatment for NAFLD. Treatment is therefore based on lifestyle modifications including changes to diet and exercise, although it is unclear what the most effective form of intervention is. The aim of this review, then, is to discuss the role of specific nutrients and the effects of different dietary interventions on NAFLD. It is well established that an unhealthy diet rich in calories, sugars, and saturated fats and low in polyunsaturated fatty acids, fibre, and micronutrients plays a critical role in the development and progression of this disease. However, few clinical trials have evaluated the effects of nutrition interventions on NAFLD. We, therefore, summarise what is currently known about the effects of macronutrients, foods, and dietary patterns on NAFLD prevention and treatment. Most current guidelines recommend low-calorie, plant-based diets, such as the Mediterranean diet, as the most effective dietary pattern to treat NAFLD. More clinical trials are required, however, to identify the best evidence-based dietary treatment approach.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88005 ◽  
Author(s):  
Valerio Nobili ◽  
Guido Carpino ◽  
Anna Alisi ◽  
Rita De Vito ◽  
Antonio Franchitto ◽  
...  

2017 ◽  
Vol 95 (10) ◽  
pp. 1141-1148 ◽  
Author(s):  
Victoria Sid ◽  
Yaw L. Siow ◽  
Karmin O

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver conditions that are characterized by steatosis, inflammation, fibrosis, and liver injury. The global prevalence of NAFLD is rapidly increasing in proportion to the rising incidence of obesity and type 2 diabetes. Because NAFLD is a multifaceted disorder with many underlying metabolic abnormalities, currently, there is no pharmacological agent that is therapeutically approved for the treatment of this disease. Folate is a water-soluble B vitamin that plays an essential role in one-carbon transfer reactions involved in nucleic acid biosynthesis, methylation reactions, and sulfur-containing amino acid metabolism. The liver is the primary organ responsible for storage and metabolism of folates. Low serum folate levels have been observed in patients with obesity and diabetes. It has been reported that a low level of endogenous folates in rodents perturbs folate-dependent one-carbon metabolism, and may be associated with development of metabolic diseases such as NAFLD. This review highlights the biological role of folate in the progression of NAFLD and its associated metabolic complications including obesity and type 2 diabetes. Understanding the role of folate in metabolic disease may position this vitamin as a potential therapeutic for NAFLD.


2019 ◽  
Author(s):  
Wenyue Zhang ◽  
Yao Tang ◽  
Juan Huang ◽  
Hong Ren ◽  
Yixuan Yang ◽  
...  

Abstract Background Nonalcoholic fatty liver disease (NAFLD) is a kind of chronic liver disease among general population. Recent years, more and more new experiments have made the role of ursodeoxycholic acid (UDCA) become clearer. In this meta-analysis, we analyzed the efficacy of ursodeoxycholic acid (UDCA) for the treatment of nonalcoholic fatty liver disease (NAFLD). Methods We searched the Web of Science, Pubmed, Embase and Cochrane library databases for relavent studies published before March 1, 2019. We examined 134 randomized controlled trials (RCTs) that investigated the effectiveness of UDCA in NAFLD against placebo or other treatments. Next, we conducted meta-analysis by Stata(version 12.0) to examine the change among several indices: Alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), Alkaline phosphatase (AP), total bilirubin and albumin. Results Following the application of different inclusion and exclusion criteria, 9 articles with 1106 participants were finally selected. The forest plot displayed that UDCA treatment can significantly decrease the ALT levels among the NAFLD patients (SMD=0.17,95%CI [0.03 to 0.3], P=0.07). However, UDCA treatment did not significantly affect the AST, GGT, AP, total bilirubin and albumin levels. Further, the subgroup analyses suggested the significant role of UDCA treatment in different geographical regions, age group and treatment duration (P=0.003 in people from Europe, P=0.001 in people older than 50 years and P=0.008 in longer duration(>6 months)). Conclusion In this study, several indices we analyzed among 9 articles. UDCA treatment was found beneficial in lowering the ALT levels in NAFLD patients. The remaining indices like AST, GGT, AP showed non-significant changes in this analysis. This could be attributed for the insufficient number of trials because all parameters were not analyzed in each individual RCT. Therefore, future meta-analysis will be required to fully confirm and validate the efficacy of UDCA in NAFL.


Sign in / Sign up

Export Citation Format

Share Document