Effect of iron status on DMT1 expression in duodenal enterocytes from β2-microglobulin knockout mice

2002 ◽  
Vol 283 (3) ◽  
pp. G687-G694 ◽  
Author(s):  
Torben Moos ◽  
Debbie Trinder ◽  
Evan H. Morgan

Divalent metal transporter I (DMT1) is thought to be involved in transport of iron across the apical cell membrane of villus duodenal cells. To determine its role in hereditary hemochromatosis (HH), we used β2-microglobulin knockout ( B2M−/−) mice that accumulate iron as in HH. The B2M−/− and control C57BL/6 ( B2M+/+) mice were fed diets with different iron contents. Increasing the iron availability increased plasma iron levels in both B2M+/+ and B2M−/−mice. Reducing the iron availability decreased the plasma iron concentration in B2M+/+ mice but was without effect on plasma iron in B2M−/− mice. DMT1 was not detectable in mice fed normal or iron-loaded diets when using immunohistochemistry. In Western blots, however, the protein was consistently observed regardless of the dietary regimen. DMT1 expression was increased to the same extent in B2M+/+ and B2M−/− mice when fed an iron-poor diet. In both strains of mice fed an iron-poor diet, DMT1 was evenly distributed in the differentiated enterocytes from the base to the tip of the villi but was absent from the crypts of Lieberkühn. These data suggest that the observed effects were due to the state of iron deficiency in mucosal cells rather than genetic defect.

2003 ◽  
Vol 284 (1) ◽  
pp. F182-F188 ◽  
Author(s):  
Vadim G. Shlyonsky ◽  
Frédérique Mies ◽  
Sarah Sariban-Sohraby

The activity of epithelial Na+ selective channels is modulated by various factors, with growing evidence that membrane lipids also participate in the regulation. In the present study, Triton X-100 extracts of whole cells and of apical membrane-enriched preparations from cultured A6 renal epithelial cells were floated on continuous-sucrose-density gradients. Na+ channel protein, probed by immunostaining of Western blots, was detected in the high-density fractions of the gradients (between 18 and 30% sucrose), which contain the detergent-soluble material but also in the lighter, detergent-resistant 16% sucrose fraction. Single amiloride-sensitive Na+ channel activity, recorded after incorporation of reconstituted proteoliposomes into lipid bilayers, was exclusively localized in the 16% sucrose fraction. In accordance with other studies, high- and low-density fractions of sucrose gradients likely represent membrane domains with different lipid contents. However, exposure of the cells to cholesterol-depleting or sphingomyelin-depleting agents did not affect transepithelial Na+ current, single-Na+ channel activity, or the expression of Na+ channel protein. This is the first reconstitution study of native epithelial Na+ channels, which suggests that functional channels are compartmentalized in discrete domains within the plane of the apical cell membrane.


Author(s):  
Len Wen-Yung ◽  
Mei-Jung Lin

Four cone-shaped rectal papillae locate at the anterior part of the rectum in Dacus dorsalis fly. The circular base of the papilla protrudes into the haemolymph (Fig. 1,2) and the rest cone-shaped tip (Fig. 2) inserts in the rectal lumen. The base is surrounded with the cuticle (Fig. 5). The internal structure of the rectal papilla (Fig. 3) comprises of the cortex with the columnar epithelial cells and a rod-shaped medulla. Between them, there is the infundibular space and many trabeculae connect each other. Several tracheae insert into the papilla through the top of the medulla, then run into the cortical epithelium and locate in the intercellular space. The intercellular sinuses distribute in the posterior part of the rectal papilla.The cortex of the base divides into about thirty segments. Between segments there is a radial cell (Fig. 4). Under the cuticle, the apical cell membrane of the cortical epithelium is folded into a regular border of leaflets (Fig. 5).


2021 ◽  
Vol 22 (9) ◽  
pp. 4479
Author(s):  
Eleonora Ficiarà ◽  
Zunaira Munir ◽  
Silvia Boschi ◽  
Maria Eugenia Caligiuri ◽  
Caterina Guiot

Proper functioning of all organs, including the brain, requires iron. It is present in different forms in biological fluids, and alterations in its distribution can induce oxidative stress and neurodegeneration. However, the clinical parameters normally used for monitoring iron concentration in biological fluids (i.e., serum and cerebrospinal fluid) can hardly detect the quantity of circulating iron, while indirect measurements, e.g., magnetic resonance imaging, require further validation. This review summarizes the mechanisms involved in brain iron metabolism, homeostasis, and iron imbalance caused by alterations detectable by standard and non-standard indicators of iron status. These indicators for iron transport, storage, and metabolism can help to understand which biomarkers can better detect iron imbalances responsible for neurodegenerative diseases.


2019 ◽  
Vol 195 (2) ◽  
pp. 551-558 ◽  
Author(s):  
Joanna Suliburska ◽  
Katarzyna Skrypnik ◽  
Agata Chmurzyńska

Abstract Although simultaneous supplementation with iron and folic acid is justified, the potential interactions between these micronutrients are unknown. The aim of this study was to determine the effects of oral iron and folic acid, administered together or separately, on iron concentration in tissues in rats with a deficiency of both these micronutrients. In the first stage of the experiment (28 days), 150 8-week-old female Wistar rats were randomly assigned to a control group (C; n = 30) fed the standard diet and to a study group (n = 120) fed a diet deficit in iron and folate. The study group was then randomly divided to four groups: D group fed a deficit diet, FE group fed a deficit diet with iron gluconate, the FOL group fed a deficit diet with folate acid, and the FEFOL group fed a deficit diet with iron gluconate and folate acid. After 2, 10, and 21 days of supplementation, ten animals from each group were killed. Morphological parameters were measured in whole blood. Iron concentration was assayed in serum, liver, spleen, pancreas, heart, and kidneys. Folic acid supplementation more significantly decreased iron concentrations in the pancreas and spleen than in the D group after 10 and 21 days of supplementation. Moreover, the combination of iron with folic acid markedly decreased iron levels in the liver and spleen, in comparison with iron alone, after 10 and 21 days of the experiment. In conclusion, folic acid affects iron status in female rats deficient in these micronutrients in moderate and long-term supplementation.


Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Author(s):  
Debjyoti Bhakat ◽  
Indranil Mondal ◽  
Asish Kumar Mukhopadhyay ◽  
Nabendu Sekhar Chatterjee

Enterotoxigenic Escherichia coli (ETEC) is a major pathogen of acute watery diarrhoea. The pathogenicity of ETEC is linked to adherence to the small intestine by colonization factors (CFs) and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). CS6 is one of the most common CFs in our region and worldwide. Iron availability functions as an environmental cue for enteropathogenic bacteria, signalling arrival within the human host. Therefore, iron could modify the expression of CS6 in the intestine. The objective of this study was to determine the effect of iron availability on CS6 expression in ETEC. This would help in understanding the importance of iron during ETEC pathogenesis. ETEC strain harbouring CS6 was cultured under increasing concentrations of iron salt to assess the effect on CS6 RNA expression by quantitative RT-PCR, protein expression by ELISA, promoter activity by β-galactosidase activity, and epithelial adhesion on HT-29 cells. RNA expression of CS6 was maximum in presence of 0.2 mM iron (II) salt. The expression increased by 50-fold, which also reduced under iron-chelation conditions and an increased iron concentration of 0.4 mM or more. The surface expression of CS6 also increased by 60-fold in presence of 0.2 mM iron. The upregulation of CS6 promoter activity by 25-fold under this experimental condition was in accordance with the induction of CS6 RNA and protein. This increased CS6 expression was independent of ETEC strains. Bacterial adhesion to HT-29 epithelial cells was also enhanced by five-fold in the presence of 0.2 mM iron salt. These findings suggest that CS6 expression is dependent on iron concentration. However, with further increases in iron concentration beyond 0.2 mM CS6 expression is decreased, suggesting that there might be a strong regulatory mechanism for CS6 expression under different iron concentrations.


1995 ◽  
Vol 268 (2) ◽  
pp. C425-C433 ◽  
Author(s):  
M. J. Stutts ◽  
E. R. Lazarowski ◽  
A. M. Paradiso ◽  
R. C. Boucher

Luminal extracellular ATP evoked a bumetanide-sensitive short-circuit current in cultured T84 cell epithelia (90.2 +/- 18.2 microA/cm2 at 100 microM ATP, apparent 50% effective concentration, 11.5 microM). ATP appeared to increase the Cl- conductance of the apical membrane but not the driving force for Cl- secretion determined by basolateral membrane K+ conductance. Specifically, the magnitude of Cl- secretion stimulated by ATP was independent of basal current, and forskolin pretreatment abolished subsequent stimulation of Cl- secretion by ATP. Whereas ATP stimulated modest production of adenosine 3',5'-cyclic monophosphate (cAMP) by T84 cells, ATP caused smaller increases in intracellular Ca2+ and inositol phosphate activities than the Ca(2+)-signaling Cl- secretagogue carbachol. An inhibitor of 5'-nucleotidase, alpha,beta-methyleneadenosine 5'-diphosphate, blocked most of the response to luminal ATP. The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline blocked both the luminal ATP-dependent generation of cAMP and Cl- secretion when administered to the luminal but not submucosal bath. These results demonstrate that the Cl- secretion stimulated by luminal ATP is mediated by a A2-adenosine receptor located on the apical cell membrane. Thus metabolism of extracellular ATP to adenosine regulates the activity of cystic fibrosis transmembrane conductor regulator (CFTR) in the apical membrane of polarized T84 cells.


1984 ◽  
Vol 247 (5) ◽  
pp. R842-R849 ◽  
Author(s):  
M. Stefanelli ◽  
D. P. Bentley ◽  
I. Cavill ◽  
H. P. Roeser

Reticuloendothelial iron kinetics were investigated in a simultaneous dual-isotope study in 10 healthy adult subjects in whom 55Fe-ferric hydroxide phosphate colloid was used to label the reticuloendothelial iron pools, and 59Fe-transferrin was used to define plasma iron kinetics. The simultaneous clearance of 55Fe and 59Fe from plasma and the uptake of each into red blood cells were measured over 14 days. The 55Fe-colloid was cleared almost immediately, and its iron was rapidly released to bind to plasma transferrin. Red cell incorporation of 55Fe was, however, much slower than that of 59Fe bound to transferrin in vitro. The data were analyzed by a new model of reticuloendothelial iron metabolism that contained two reticuloendothelial iron pools; one had a rapid turnover and donated iron to transferrin, and the other, a storage pool, had a slower turnover. The transit pool contained a mean of 164 mumol iron with little variation between subjects, whereas the storage pool was somewhat larger (mean 873 mumol iron) and showed more marked variation between subjects. In general an equal proportion of the iron leaving the transit pool went to transferrin and to the storage pool. The distribution between the two routes did not appear to be related either to plasma iron concentration, latent iron-binding capacity, or transferrin saturation.


1985 ◽  
Vol 248 (6) ◽  
pp. F858-F868 ◽  
Author(s):  
S. C. Sansom ◽  
R. G. O'Neil

The effects of mineralocorticoid (DOCA) treatment of rabbits on the Na+ and K+ transport properties of the cortical collecting duct apical cell membrane were assessed using microelectrode techniques. Applying standard cable techniques and equivalent circuit analysis to the isolated perfused tubule, the apical cell membrane K+ and Na+ currents and conductances could be estimated from the selective effects of the K+ channel blocker Ba2+ and the Na+ channel blocker amiloride on the apical membrane; amiloride treatment was observed also to decrease the tight junction conductance by an average of 10%. After 1 day of DOCA treatment, the Na+ conductance and current (Na+ influx) of the apical cell membrane doubled and remained elevated with prolonged treatment for up to 2 wk. The apical cell membrane K+ conductance was not influenced after 1 day, although the K+ current (K+ secretion) increased significantly due to an increased driving force for K+ exit. After 4 days or more of DOCA treatment the K+ conductance doubled, resulting in a further modest stimulation in K+ secretion. After 2 wk of DOCA treatment the tight junction conductance decreased by near 30%, resulting in an additional hyperpolarization of the transepithelial voltage, thereby favoring K+ secretion. It is concluded that the acute effect (within 1 day) of mineralocorticoids on Na+ and K+ transport is an increase in the apical membrane Na+ conductance followed by delayed chronic alterations in the apical membrane K+ conductance and tight junction conductance, thereby resulting in a sustained increased capacity of the tubule to reabsorb Na+ and secrete K+.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2235-2235
Author(s):  
Elisa Brilli ◽  
Michela Asperti ◽  
Annalisa Castagna ◽  
Claudio Cerchione ◽  
Domenico Girelli ◽  
...  

Introduction: Iron Refractory Iron Deficiency Anemia (IRIDA) is an autosomal recessive iron metabolism disorder caused by mutations in Tmprss6 gene which encodes for Matriptase2 (MT2) that, by activating hemojuvelin (HJV), regulates the production of hepcidin, the master iron regulatory hormone. Altered MT2 cannot suppress hepatic BMP6/SMAD signaling in low iron condition, hence the resulting hepcidin excess blocks dietary iron absorption and cells release, leading to a form of iron deficiency that is typically refractory to oral iron supplementation. IRIDA is characterized by moderate/severe microcytic anemia (Hemoglobin 6-9 g/dL; MCV 45-65 fL); low transferrin saturation (<5%); impaired oral iron absorption and only a transient response to parenteral iron. Nonetheless, the current treatment is mainly based on parenteral iron therapy. A case study on a child with IRIDA showed for the first time the ability of Sucrosomial® Iron, to increase hemoglobin and MCV values over time (Capra et al., 2017). This oral iron formulation is an innovative preparation of ferric pyrophosphate, covered by a phospholipids plus sucrester matrix, with gastro-resistance properties, high bioavailability and tolerability due to alternative absorption pathways as endocytosis and M cells mediated route (Gomez-Ramirez et al., 2018). Moreover, Sucrosomial® Iron has been successfully used to treat iron deficiency in various clinical conditions, including inflammatory bowel diseases (Abbati et al., 2019). To confirm and characterize the ability of Sucrosomial® Iron to increase Hb in IRIDA disease we studied the response to Sucrosomial® Iron in a IRIDA mouse model (Mask) comparing the efficacy of Sucrosomial® Iron and Sulfate Iron at two different doses and in chronic treatment. Aim: to study Sucrosomial® Iron effect in IRIDA using the Tmprss6 knock-out mouse model Material and Methods: m/m homozygous mice (9-weeks old male mice, four mice per experimental group) were kept at iron balance diet and treated with 0.5 or 4 mg/Kg of Ferrous sulfate, Sucrosomial® Iron (patent n° PCT/IB2013/001659 owned by Alesco s.r.l, Italy), or vehicle by gavage for 35 days. Four 9-weeks old m/- male mice per experimental group were daily treated and Hb and Ht were monitored weekly. Mice were sacrificed at the end of treatments; blood, and different organs were collected for analysis. Total RNA was isolated from tissues using TRIzol Reagent (Ambion), cDNA was generated by Reverse transcription (Promega, Milan, Italy) and samples were analyzed for Hepcidin and Socs3 mRNA levels by qRT-PCR using PowerUp SYBR Green Master Mix (Life Technologies). Results: we analyzed the iron status of anemic homozygous Mask mice from 3 to 35 weeks of age by studying serological and tissue iron content. Interestingly only Sucrosomial® Iron (not Ferrous Sulfate), increased hemoglobin level from 11-12 to 13-14 g/dL in the first week with a tendency to increase until the fourth week, when it stabilized at 13 g/dL (Figure 1A-B). Serum iron concentration was higher in the Sucrosomial® Iron treated animals than in those treated with vehicle, while was lower in the Ferrous sulfate treated animals. Similar pattern was observed for spleen iron content that increased in mice treated with Sucrosomial® Iron but not in those receiving Ferrous sulfate. Liver iron concentration did not apparently varied after the treatments, but duodenal iron increased significantly only in the mice treated with the higher dose of Ferrous sulfate (Figure 1 C-F). Interestingly, we found that the mice treated with both doses of Ferrous sulfate, but not those treated with Sucrosomial® Iron, had a higher mRNA levels of hepcidin and of the inflammatory marker Socs3 (Figure 1 G-H). Conclusion: this study showed for the first time that Sucrosomial® Iron is able to increase hemoglobin level in a mouse model of IRIDA, probably due to its alternative absorption pathway. Sucrosomial® Iron could be used as effective iron supplement to improve iron status in IRIDA patients. Disclosures Girelli: La Jolla Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; Vifor Pharma: Other: honoraria for lectures; Silence Therapeutics: Membership on an entity's Board of Directors or advisory committees.


2004 ◽  
Vol 186 (6) ◽  
pp. 1638-1647 ◽  
Author(s):  
Robert D. Perry ◽  
Alexander G. Bobrov ◽  
Olga Kirillina ◽  
Heather A. Jones ◽  
Lisa Pedersen ◽  
...  

ABSTRACT In Yersinia pestis, the Congo red (and hemin) binding that is characteristic of the Hms+ phenotype occurs at temperatures up to 34°C but not at higher temperatures. Manifestation of the Hms+ phenotype requires at least five proteins (HmsH, -F, -R, -S, and -T) that are organized into two separate operons: hmsHFRS and hmsT. HmsH and HmsF are outer membrane proteins, while HmsR, HmsS, and HmsT are predicted to be inner membrane proteins. We have used transcriptional reporter constructs, RNA dot blots, and Western blots to examine the expression of hms operons and proteins. Our studies indicate that transcription from the hmsHFRS and hmsT promoters is not regulated by the iron status of the cells, growth temperature, or any of the Hms proteins. In addition, the level of mRNA for both operons is not significantly affected by growth temperature. However, protein levels of HmsH, HmsR, and HmsT in cells grown at 37°C are very low compared to those in cells grown at 26°C, while the amounts of HmsF and HmsS show only a moderate reduction at the higher growth temperature. Neither the Pla protease nor a putative endopeptidase (Y2360) encoded upstream of hmsH is essential for temperature regulation of the Hms+ phenotype. However, HmsT at 37°C is sensitive to degradation by Lon and/or ClpPX. Thus, the stability of HmsH, HmsR, and HmsT proteins likely plays a role in temperature regulation of the Hms+ phenotype of Y. pestis.


Sign in / Sign up

Export Citation Format

Share Document