Diabetic KK-Ay mice are highly susceptible to oxidative hepatocellular damage induced by acetaminophen

2010 ◽  
Vol 299 (2) ◽  
pp. G329-G337 ◽  
Author(s):  
Kazuyoshi Kon ◽  
Kenichi Ikejima ◽  
Kyoko Okumura ◽  
Kumiko Arai ◽  
Tomonori Aoyama ◽  
...  

Despite pathophysiological similarities to alcoholic liver disease, susceptibility to acetaminophen hepatotoxicity in metabolic syndrome-related nonalcoholic steatohepatitis (NASH) has not been well elucidated. In this study, therefore, we investigated acetaminophen-induced liver injury in KK-Ay mice, an animal model of metabolic syndrome. Twelve-week-old male KK-Ay and C57Bl/6 mice were injected intraperitoneally with 300 or 600 mg/kg acetaminophen, and euthanized 6 h later. Liver histology was assessed, and hepatic expression of 4-hydroxy-2-nonenal was detected by immunohistochemistry. Levels of reduced glutathione were determined spectrophotometrically. Phosphorylation of c-Jun NH2-terminal kinase (JNK) was analyzed by Western blotting. Hepatocytes were isolated from both strains by collagenase perfusion, and cell death and oxidative stress were measured fluorometrically by use of propidium iodide and 5-(and-6)-chloromethyl-2′7′-dichloro-dihydrofluorescein diacetate acetyl ester, respectively. Acetaminophen induced more severe necrosis and apoptosis of hepatocytes in KK-Ay mice than in C57Bl/6 mice and significantly increased serum alanine aminotransferase levels in KK-Ay mice. Acetaminophen-induction of 4-hydroxy-2-nonenal in the liver was potentiated, whereas the levels of reduced glutathione in liver were lower in KK-Ay mice. Acetaminophen-induced phosphorylation of JNK in the liver was also enhanced in KK-Ay mice. Exposure to 20 μM tert-butyl hydroperoxide did not kill hepatocytes isolated from C57Bl/6 mice but induced cell death and higher oxidative stress in hepatocytes from KK-Ay mice. These results demonstrated that acetaminophen toxicity is increased in diabetic KK-Ay mice mainly due to enhanced oxidative stress in hepatocytes, suggesting that metabolic syndrome-related steatohepatitis is an exacerbating factor for acetaminophen-induced liver injury.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zhengyu Jiang ◽  
Yan Meng ◽  
Lulong Bo ◽  
Changli Wang ◽  
Jinjun Bian ◽  
...  

Septic liver injury/failure that is mainly characterized by oxidative stress, inflammation, and apoptosis led to a great part of terminal liver pathology with limited effective intervention. Here, we used a lipopolysaccharide (LPS) stimulation model to simulate the septic liver injury and investigated the effect of sophocarpine on LPS-stimulated mice with endotoxemia. We found that sophocarpine increases the survival rate of mice and attenuates the LPS-induced liver injury, which is indicated by pathology and serum liver enzymes. Further research found that sophocarpine ameliorated hepatic oxidative stress indicators (H2O2, O2∙−, and NO) and enhanced the expression of antioxidant molecules such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). In addition, sophocarpine also attenuated regional and systematic inflammation and further reduced apoptosis of hepatocytes. Mechanistic evidence was also investigated in the present study as sophocarpine inhibited hepatic expression of the CYP2E/Nrf2 pathway during oxidative stress, inactivated p38/JNK cascade and NF-κB pathway, and, meanwhile, suppressed PI3K/AKT signaling that reduced apoptosis. Conclusively, the present study unveiled the protective role of sophocarpine in LPS-stimulated oxidative reaction, inflammation, and apoptosis by suppressing the CYP2E/Nrf2/ROS as well as PI3K/AKT pathways, suggesting its promising role in attenuating inflammation and liver injury of septic endotoxemia.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-37
Author(s):  
Jun Xia ◽  
Stephanie Sun ◽  
Matthew RM Jotte ◽  
Geoffrey L Uy ◽  
Ella Sorani ◽  
...  

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that accounts for 10-15% of pediatric and 25% of adult ALL cases. Prior studies have established that most cases pf T-ALL are addicted to CXCR4 signaling. Indeed, strong preclinical data demonstrating therapeutic activity of BL-8040, a potent CXCR4 antagonist, have led to a clinical trial of BL-8040 in combination with nelarabine for patients with relapsed/refractory T-ALL (NCT02763384). However, the molecular mechanisms by which CXCR4 blockade induces T-ALL cell death are unknown. Using a human T-ALL xenotransplantation model, we previously reported that treatment with BL-8040 killed T-ALL cells through a non-apoptotic mechanism. Transcriptome sequencing revealed that BL-8040 induced alterations in genes involved in oxidative phosphorylation and carbohydrate metabolism. Indeed, seahorse experiments show that BL-8040 markedly reduced both oxidative phosphorylation and glycolysis. However, metabolic tracing studies using 13C-labeled glucose show that BL-8040 treatment does not have a major effect on the contribution of glucose to either glycolysis or the citric acid cycle. Instead, the major alteration observed is the reduced entry of glucose into the pentose phosphate pathway (PPP). A major function of the PPP pathway is to generate NADPH, which regulates reactive oxygen species (ROS) by producing reduced glutathione (GSH). Indeed, BL-8040 treatment resulted in a significant decrease in the ratio of reduced glutathione to oxidized glutathione. Together, these data suggest that BL-8040 induces oxidative stress by inhibiting GSH production. One mechanism utilized by cancer cells to regulate GSH levels and oxidative stress is the system xc- amino acid antiporter that mediates the exchange of extracellular L-cystine and intracellular l-glutamate across the plasma membrane, resulting in the production of GSH and oxidative protection. We measured L-cystine levels in the media of T-ALL cells cultured for 24 hours with or without BL-8040. A significant decrease in L-cystine in the media was observed. These data, along with increased expression of the xc- transporter (SLC7A11), suggested that increased system xc- activity was compensating for the loss of GSH induced by BL-8040. To test this possibility, we cultured T-ALL cells in L-cystine deficient media. Loss of L-cystine in the media resulted in a modest decrease in T-ALL cell viability that was markedly increased, in a synergistic fashion, upon treatment with BL-8040. Interestingly, caspase 3 was not activated, suggesting that, similar to in vivo results, BL-8040 induces a non-apoptotic cell death. This observation, coupled with the reduction in GSH, suggested the hypothesis that BL-8040 induces ferroptosis. Consistent with the hypothesis, treatment of T-ALL cells with ACXT-3102, a novel system xc- inhibitor, significantly enhanced BL-8040 killing of T-ALL cells in vitro. Collectively, these data suggest that T-ALL cells are sensitive to perturbations of the glutathione axis. Combined inhibition of CXCR4 signaling and system xc- activity exploits this vulnerability and presents a promising new therapeutic approach for T-ALL. Disclosures Uy: Astellas Pharma: Honoraria; Jazz Pharmaceuticals: Consultancy; Genentech: Consultancy; Agios: Consultancy; Pfizer: Consultancy; Daiichi Sankyo: Consultancy. Sorani:BiolineRx Ltd: Current Employment. Vainstein:BiolineRx Ltd: Current Employment. Davish:BiolineRx Ltd: Current Employment. Hawkins:Accuronix Therapeutics: Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Vol 170 (2) ◽  
pp. 549-561 ◽  
Author(s):  
Matthew McMillin ◽  
Stephanie Grant ◽  
Gabriel Frampton ◽  
Anca D Petrescu ◽  
Elaina Williams ◽  
...  

Abstract Acute liver failure is a serious consequence of acetaminophen (APAP)-induced hepatotoxic liver injury with high rates of morbidity and mortality. Transforming growth factor beta 1 (TGFβ1) is elevated during liver injury and influences hepatocyte senescence during APAP-induced hepatotoxicity. This study investigated TGFβ1 signaling in the context of inflammation, necrotic cell death, and oxidative stress during APAP-induced liver injury. Male C57Bl/6 mice were injected with 600 mg/kg APAP to generate liver injury in the presence or absence of the TGFβ receptor 1 inhibitor, GW788388, 1 h prior to APAP administration. Acetaminophen-induced liver injury was characterized using histological and biochemical measures. Transforming growth factor beta 1 expression and signal transduction were assessed using immunohistochemistry, Western blotting and ELISA assays. Hepatic necrosis, liver injury, cell proliferation, hepatic inflammation, and oxidative stress were assessed in all mice. Acetaminophen administration significantly induced necrosis and elevated serum transaminases compared with control mice. Transforming growth factor beta 1 staining was observed in and around areas of necrosis with phosphorylation of SMAD3 observed in hepatocytes neighboring necrotic areas in APAP-treated mice. Pretreatment with GW788388 prior to APAP administration in mice reduced hepatocyte cell death and stimulated regeneration. Phosphorylation of SMAD3 was reduced in APAP mice pretreated with GW788388 and this correlated with reduced hepatic cytokine production and oxidative stress. These results support that TGFβ1 signaling plays a significant role in APAP-induced liver injury by influencing necrotic cell death, inflammation, oxidative stress, and hepatocyte regeneration. In conclusion, targeting TGFβ1 or downstream signaling may be a possible therapeutic target for the management of APAP-induced liver injury.


1999 ◽  
Vol 18 (4) ◽  
pp. 239-244
Author(s):  
Isabelle Latour ◽  
Pedro Buc-Calderon

The formation of heat shock proteins (hsp) leading to thermotolerance has been extensively reported in many cell types. In freshly isolated rat hepatocytes, hsp were synthesized after 60 minutes of incubation at 42°C. Cell survival was not modified by such a treatment, but protein synthesis, secretion of triglycerides as lipoproteins, and the maintenance of both ATP and glycogen levels were significantly impaired. When exposed to an oxidative stress, heat-shocked hepatocytes were not more resistant than cells always kept at 37°C. Conversely, the addition of tert-butyl hydroperoxide (tBOOH) resulted, in general, in an increased lactate dehydrogenase leakage. The metabolism of tBOOH, as estimated by the reduced glutathione (GSH) content and GSH peroxidase activity, was similar in both control and heat-shocked hepatocytes. Despite the synthesis of hsp in rat hepatocytes, the lack of resistance to a subsequent oxidant injury may be due to the metabolic impairment caused by the heat shock.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Li Zhang ◽  
Jiabin Guo ◽  
Qiang Zhang ◽  
Wei Zhou ◽  
Jin Li ◽  
...  

Flutamide is a widely used nonsteroidal antiandrogen for prostate cancer therapy, but its clinical application is restricted by the concurrent liver injury. Increasing evidence suggests that flutamide-induced liver injury is associated with oxidative stress, though the precise mechanism is poorly understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidants including heme oxygenase-1 (HO-1). This study was designed to delineate the role of Nrf2/HO-1 in flutamide-induced hepatic cell injury. Our results showed that flutamide concentration dependently induced cytotoxicity, hydrogen peroxide accumulation, and mitochondrial dysfunction as indicated by mitochondrial membrane potential loss and ATP depletion. The protein expression of Nrf2 and HO-1 was induced by flutamide at 12.5 μM but was downregulated by higher concentrations of flutamide. Silencing either Nrf2 or HO-1 was found to aggravate flutamide-induced hydrogen peroxide accumulation and mitochondrial dysfunction as well as inhibition of the Nrf2 pathway. Moreover, preinduction of HO-1 by Copp significantly attenuated flutamide-induced oxidative stress and mitochondrial dysfunction, while inhibition of HO-1 by Snpp aggravated these deleterious effects. These findings suggest that flutamide-induced hepatic cell death and mitochondrial dysfunction is assoicated with inhibition of Nrf2-mediated HO-1. Pharmacologic intervention of Nrf2/HO-1 may provide a promising therapeutic approach in flutamide-induced liver injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Wang ◽  
Yan Zhao ◽  
Zhecheng Wang ◽  
Ruimin Sun ◽  
Boyang Zou ◽  
...  

Pyroptosis is a newly discovered form of cell death. Peroxiredoxin 3 (PRX3) plays a crucial role in scavenging reactive oxygen species (ROS), but its hepatoprotective capacity in acetaminophen (APAP)-induced liver disease remains unclear. The aim of this study was to assess the role of PRX3 in the regulation of pyroptosis during APAP-mediated hepatotoxicity. We demonstrated that pyroptosis occurs in APAP-induced liver injury accompanied by intense oxidative stress and inflammation, and liver specific PRX3 silencing aggravated the initiation of pyroptosis and liver injury after APAP intervention. Notably, excessive mitochondrial ROS (mtROS) was observed to trigger pyroptosis by activating the NLRP3 inflammasome, which was ameliorated by Mito-TEMPO treatment, indicating that the anti-pyroptotic role of PRX3 relies on its powerful ability to regulate mtROS. Overall, PRX3 regulates NLRP3-dependent pyroptosis in APAP-induced liver injury by targeting mitochondrial oxidative stress.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1635
Author(s):  
Byoung Ok Cho ◽  
Jang Hoon Kim ◽  
Denis Nchang Che ◽  
Hyun Ju Kang ◽  
Jae Young Shin ◽  
...  

Sophora flavescens, also known as Kushen, has traditionally been used as a herbal medicine. In the present study we evaluated the ameliorative effects of kushenol C (KC) from S. flavescens against tBHP (tert-Butyl hydroperoxide)-induced oxidative stress in hepatocellular carcinoma (HEPG2) cells and acetaminophen (APAP)-induced hepatotoxicity in mice. KC pretreatment protected the HEPG2 cells against oxidative stress by reducing cell death, apoptosis and reactive oxygen species (ROS) generation. KC pretreatment also upregulated pro-caspase 3 and GSH (glutathione) as well as expression of 8-Oxoguanine DNA Glycosylase (OGG1) in the HEPG2 cells. The mechanism of action was partly related by KC’s activation of Akt (Protein kinase B (PKB)) and Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) in the HepG2 cells. In in vivo investigations, coadministration of mice with KC and APAP significantly attenuated APAP-induced hepatotoxicity and liver damage, as the serum enzymatic activity of aspartate aminotransferase and alanine aminotransferase, as well as liver lipid peroxidation and cleaved caspase 3 expression, were reduced in APAP-treated mice. Coadministration with KC also up-regulated antioxidant enzyme expression and prevented the production of proinflammatory mediators in APAP-treated mice. Taken together, these results showed that KC treatment has potential as a therapeutic agent against liver injury through the suppression of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document