Quantitative determination of macromolecular transport rate across intestinal Peyer's patches

1983 ◽  
Vol 244 (6) ◽  
pp. G637-G644 ◽  
Author(s):  
D. J. Keljo ◽  
J. R. Hamilton

We used horseradish peroxidase (HRP) (mol wt, 40,000) to compare in vitro, in Ussing chambers, the rates of protein transport across segments of piglet jejunum with and without Peyer's patches. The mean HRP transport rate across intestinal segments with a patch, 25.2 +/- 4.2 SE ng . min-1 . cm-2 (22 animals), was increased threefold (P less than 0.0005) compared with control (no patch) tissue, 7.9 +/- 1.0 ng . min-1 . cm-2 (n = 29). Neither rate showed saturation with increasing concentrations of HRP; both were inhibited 75–95% by a temperature drop from 37 to 15 degrees C. Transport across patch-containing tissue was inhibited 48 +/- 6% (n = 5, P less than 0.0025) by 1 mM NaF, but NaF had no consistent effect on the transport across tissue without Peyer's patches. We conclude that HRP transport is increased across Peyer's patches. This transport is dependent on metabolism and does not involve specific receptors. These findings support the concept that the Peyer's patch serves an antigen-sampling function in the gut.

1983 ◽  
Vol 245 (1) ◽  
pp. G54-G58 ◽  
Author(s):  
R. Ducroc ◽  
M. Heyman ◽  
B. Beaufrere ◽  
J. L. Morgat ◽  
J. F. Desjeux

Uptake and transport of horseradish peroxidase (HRP) have been observed in both Peyer's patches (PP) and jejunal epithelium (JE), and the quantities transported across each tissue were compared. Steady-state was reached much faster in PP than in JE. In Ringer solution, no significant difference was found between the HRP fluxes conveyed through PP and JE. In the presence of 10 mM glucose, slight net secretion was observed in JE but not in PP. In both tissues, the transport mechanism was shown to be sensitive to metabolic inhibitors. By contrast, in PP, ammonia did not significantly enhance intact HRP fluxes. Intracellular transfer and catabolism were estimated by measuring transepithelial fluxes of tritiated HRP. In PP, fluxes from mucosa to serosa and from serosa to mucosa were both greatly reduced (9.18 +/- 3.9 and 10.5 +/- 5.1 pmol X h-1 X cm-2, respectively) compared with JE (106.02 +/- 16 and 31.3 +/- 9.3). These results indicate that intact HRP fluxes are similar in PP and JE, but that tritiated HRP fluxes (intact plus degraded HRP fluxes) are smaller in PP. Together, these results suggest that the specific characteristics of HRP transport across PP are fast uptake and reduced degradation.


1990 ◽  
Vol 172 (5) ◽  
pp. 1425-1431 ◽  
Author(s):  
L A Dent ◽  
M Strath ◽  
A L Mellor ◽  
C J Sanderson

Experiments in vitro suggest that although interleukin 5 (IL-5) stimulates the late stages of eosinophil differentiation, other cytokines are required for the generation of eosinophil progenitor cells. In this study transgenic mice constitutively expressing the IL-5 gene were established using a genomic fragment of the IL-5 gene coupled to the dominant control region from the gene encoding human CD2. Four independent eosinophilic transgenic lines have thus far been established, two of which with 8 and 49 transgene copies, are described in detail. These mice appeared macroscopically normal apart from splenomegaly. Eosinophils were at least 65- and 265-fold higher in blood from transgenics, relative to normal littermates, and approximately two- or sevenfold more numerous relative to blood from mice infected with the helminth Mesocestoides corti. Much more modest increases in blood neutrophil, lymphocyte, and monocyte numbers were noted in transgenics, relative to normal littermates (less than threefold). Thus IL-5 in vivo is relatively specific for the eosinophil lineage. Large numbers of eosinophils were present in spleen, bone marrow, and peritoneal exudate, and were highest in the line with the greatest transgene copy number. Eosinophilia was also noted in histological sections of transgenic lungs, Peyer's patches, mesenteric lymph nodes, and gut lamina propria but not in other tissues examined. IL-5 was detected in the sera of transgenics at levels comparable to those seen in sera from parasite-infected animals. IL-3 and granulocyte/macrophage colony-stimulating factor (GM-CSF) were not found. IL-5 mRNA was detected in transgenic thymus, Peyer's patches, and superficial lymph nodes, but not in heart, liver, brain, or skeletal muscle or in any tissues from nontransgenics. Bone marrow from transgenic mice was rich in IL-5-dependent eosinophil precursors. These data indicate that induction of the IL-5 gene is sufficient for production of eosinophilia, and that IL-5 can induce the full pathway of eosinophil differentiation. IL-5 may therefore not be restricted in action to the later stages of eosinophil differentiation, as suggested by earlier in vitro studies.


2001 ◽  
Vol 8 (2) ◽  
pp. 320-324 ◽  
Author(s):  
Laura Plant ◽  
Patricia Conway

ABSTRACT Sixteen strains of Lactobacillus isolated from humans, mice, and food products were screened for their capacity to associate with Peyer's patches in mice. In preliminary experiments, in vitro binding to tissue pieces was assessed by scanning electron microscopy, and it was demonstrated qualitatively that 5 of the 16 strains showed some affinity for the Peyer's patches, irrespective of their association with the nonlymphoid intestinal tissue. Lactobacillus fermentum KLD was selected for further study, since, in addition to its intrinsically high adhesion rate, this organism was found to exhibit a preferential binding to the follicle-associated epithelium of the Peyer's patches compared with its level of binding to the mucus-secreting regions of the small intestine. Quantitative assessment of scanning electron micrographs of tissue sections which had been incubated with L. fermentum KLD or a nonbinding control strain, Lactobacillus delbruckii subsp.bulgaricus, supported these observations, since a marked difference in adhesion was noted (P < 0.05). This preferential association of strain KLD with the Peyer's patches was also confirmed with radiolabeled lactobacilli incubated with intestinal tissue in the in vitro adhesion assay. Direct recovery of L. fermentum KLD from washed tissue following oral dosing of mice revealed a distinct association (P < 0.05) between this organism and the Peyer's patch tissue. In contrast, L. delbruckii subsp. bulgaricus showed negligible binding to both tissue types in both in vitro and in vivo adhesion assays. It was concluded that L. fermentum KLD bound preferentially to Peyer's patches of BALB/c mice.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
James A Rickard ◽  
Holly Anderton ◽  
Nima Etemadi ◽  
Ueli Nachbur ◽  
Maurice Darding ◽  
...  

SHARPIN regulates immune signaling and contributes to full transcriptional activity and prevention of cell death in response to TNF in vitro. The inactivating mouse Sharpin cpdm mutation causes TNF-dependent multi-organ inflammation, characterized by dermatitis, liver inflammation, splenomegaly, and loss of Peyer's patches. TNF-dependent cell death has been proposed to cause the inflammatory phenotype and consistent with this we show Tnfr1, but not Tnfr2, deficiency suppresses the phenotype (and it does so more efficiently than Il1r1 loss). TNFR1-induced apoptosis can proceed through caspase-8 and BID, but reduction in or loss of these players generally did not suppress inflammation, although Casp8 heterozygosity significantly delayed dermatitis. Ripk3 or Mlkl deficiency partially ameliorated the multi-organ phenotype, and combined Ripk3 deletion and Casp8 heterozygosity almost completely suppressed it, even restoring Peyer's patches. Unexpectedly, Sharpin, Ripk3 and Casp8 triple deficiency caused perinatal lethality. These results provide unexpected insights into the developmental importance of SHARPIN.


2004 ◽  
Vol 78 (2) ◽  
pp. 947-957 ◽  
Author(s):  
Amy B. Hutchings ◽  
Anna Helander ◽  
Katherine J. Silvey ◽  
Kartik Chandran ◽  
William T. Lucas ◽  
...  

ABSTRACT Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the σ1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-σ1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2BBe intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-σ1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-σ1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the σ1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.


1984 ◽  
Vol 160 (4) ◽  
pp. 1054-1069 ◽  
Author(s):  
C A Ottaway

The capacity of T lymphocytes exposed in vitro to the neuropeptide vasoactive intestinal peptide (VIP) to bind VIP in vitro and to migrate to different tissues in vivo has been studied. VIP treatment of T cells resulted in a time- and dose-dependent loss of the ability of T cells to specifically bind radioiodinated VIP. Altered binding was due to a decrease in the expression of cellular receptors for VIP on the treated cells rather than an alteration in the affinity of the cells for the neuropeptide. Alteration of VIP receptor expression was not associated with a change in the expression of Thy-1, Lyt-1, or Lyt-2 surface markers by the treated cells. VIP treatment of T cells in vitro resulted, however, in a dose-dependent decrease in the ability of the treated cells to localize in mesenteric lymph nodes (MLN) and Peyer's patches of recipient animals at early times after cell transfer, and this was due to a selective decrease in the rate of accumulation of the treated cells in these tissues. There was no alteration in the distribution of VIP-treated cells in the blood, spleen, liver, or other major organs of the recipient animals. It is concluded that the presence of VIP receptors on T cells facilitates the entry of T cells into MLN and Peyer's patches in vivo, and it is proposed that this effect is mediated by T cell-VIP interactions in the vicinity of the specialized endothelium of those tissues.


1987 ◽  
Vol 165 (3) ◽  
pp. 830-847 ◽  
Author(s):  
S D London ◽  
D H Rubin ◽  
J J Cebra

In this report we have shown that reovirus 1/L is an effective mucosal immunogen capable of generating a cytotoxic T cell (CTL) and associated helper T cell response to the nominal antigens associated with reovirus 1/L. The effectors that mediate reovirus-specific cytotoxicity are Thy-1+, Lyt-2+, and major histocompatibility complex (MHC)-restricted in their recognition of reovirus antigens, and can therefore be classified as CTLs. Frequency analysis of precursor CTLs occurring in Peyer's patches (PP) and peripheral lymph nodes (PLN) 6 d and 6 mo after intraduodenal stimulation have demonstrated that a persistent gradient of precursors is established, with higher frequencies present in PP. The generation of a CTL response in PP may be important in preferentially repopulating mucosal tissues with effector CTLs that could result in the local containment of infections in the gut. We also found that reovirus 1/L generates a virus-specific B cell response that is dominated by IgA memory cells after intraduodenal immunization. We hypothesize that the efficacy of reovirus 1/L at stimulating T and B cells in the gut mucosa is related to its ability to selectively enter PP via microfold (M) cells after enteric application. In this study we have also demonstrated that PP cells, upon in vitro culture and unrelated to prior reovirus priming, can generate natural killer-like (NK) cytotoxic activity. This may be an in vitro correlate of the in vivo generation of effectors that may populate mucosal tissues (i.e., the intestinal epithelium) with NK-like effector cells.


1970 ◽  
Vol 131 (6) ◽  
pp. 1200-1210 ◽  
Author(s):  
Claudia Henry ◽  
W. Page Faulk ◽  
Lotte Kuhn ◽  
J. M. Yoffey ◽  
H. Hugh Fudenberg

The immune capabilities of the Peyer's patches have been investigated by the use of an in vitro system. Despite our failure to stimulate Peyer's patch lymphocytes in vivo it appears that Peyer's patches behave immunologically as peripheral lymphoid tissues. Cultures prepared from the dissociated Peyer's patches of normal rabbits respond to sheep erythrocytes. The response is comparable to that obtained with spleen cultures from the same animals and is not dependent on the presence of the epithelial cells which line the lumen. Similar thymic cultures do not respond. Our experiments with cultures prepared from rabbits which have received one or two injections of SRC show that the Peyer's patches contain both IgM and IgG "memory" cells which have migrated from the spleen. The concentration of these cells in the spleen remains several hundredfold higher.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5605-5605
Author(s):  
Tzeon-Jye Chiou ◽  
Yi-Chun Ke ◽  
Chun-Tse Kuo ◽  
Hsiu-Yuan Huang ◽  
Shao-Chun Lu ◽  
...  

Background Foxp3+ regulatory T cells (Tregs) comprise of natural (n) and induced (i) Treg subsets play an important role in immune system. Currently, isolation of nTregs and in vitro-expanded nTregs was shown to be an effective therapy to GVHD patients. However, shortage of nTregs in peripheral blood and time consumption of expansion in vitro may eventually limit the clinical application. Conversely, iTregs can be generated in vitro from naïve T cells and to a large number of iTregs in short time. As we known, regulatory T cells would decay after a period of time, in vivo or in vitro. Keeping a certain number of iTregs during the GVHD treatment is necessary, it should be the best to provide iTregs to the patient more than single usage. Aim Manipulated supplements of TGF-β1-induced Foxp3+ regulatory T cells should be a good way for prevention from acute graft-versus-host disease within a short time. Investigation was performed via animal model. Methods Splenocytes from C57BL/6 mice were used as a source of naïve T cells by a CD4+ naïve T cell isolation Kit. To induce Foxp3+ regulatory T cells (iTregs), the CD4+ naïve T cells were incubated with anti-CD3/CD28 coated 24-well plate in the presence of IL-2 (20U/ml) and TGF-b1 (50ng/ml) for 3 days. Foxp3+iTregs were harvested and identified as the expressions of CD4+/CD25+/FoxP3+/CD127- via flow cytometry (Fig.1). In this experiment, recipients (BALB/c) were irradiated with 800cGy and then infused with donor (C57BL/6) bone marrow cells with (TCD-BM+CD4T) or without donor T cells (TCD-BM) by intravenous injection. TCD-BM+CD4T cells mice would appear aGVHD phenotype. 8x106 Foxp3+ iTregs were injected into the TCD-BM with donor T cell mouse one or twice (TCD-BM+CD4 T +iTreg) for immunosuppression assay as shown in Fig.2. Mouse GVHD phenotype, body weights and survival rates were investigated lasting for over 90 days. Tissue sections were stained with haematoxylin-eosin. Results According to our preliminary data, it indicated the injection of iTregs in the prevention of aGVHD should be feasible (Fig.3). Consequently, we have tried to investigate preventative efficiency of repeated iTregs supplements in TCD-BM mice. First of all, we compared the single-dose of iTregs with the repetition-dose of iTregs in aGVHD prevention. The data showed in Fig.4. The data showed that the survival rate was 73.3% in repeated treatment in mice, however, the survival rate was only 45.8% in single-dose of iTregs mice within 24 days. As the TCD-BM survival rate was 76.1%. It indicated that the repetition-dose of iTregs would prevent the occurrence of aGVHD, and the survival rate was similar as the bone marrow transplantation mice. The BM-CD4T mice with aGVHD phenotype could survive no more than 10 days. Furthermore, we investigated the survival time of the continual iTreg supplements mice. The data showed in Fig.5. After 90 days later, the body weight of iTregs treated mice could maintain the recovery efficiency to 83.8±2.1% and the survival rate to 78%, comparing with the TCD-BM mice was 88.8±0.6% and 73%. All of these mice could keep alive more than 90 days. Using histographic staining, we confirmed the aGVHD prevention with repeated supplement of Foxp3+iTregs to the CD4T mice (Fig.6). The mice, administration of CD4T cells with bone marrow cells, failed to survival for the serious damage of intestine villi (Fig.6A) and Peyer's patches (Fig.6B). In contrast, CD4T mice with Foxp3+-iTregs (iTregs) could survival more than 90 days and intestine villi were recovered after 90 days (Fig.6A). Peyer's patches are an important gut associated lymphoid tissue in small intestine and play a crucial role in immune response. Therefore, we have investigated the changes of Peyer's patches (Fig.6B). As the recovery of mice with iTregs for twice, the Peyer's patches reappeared after 90 days later. It indicated that keeping more iTregs in vivo could more efficient on prevention of aGVHD. It indicated that more alive iTregs to prevent GVHD occurrence more efficient and may provide the information pre-clinically. Conclusion We showed that repetition supplement of iTreg cells to TCD-BM+CD4T-treated mice, could maintain the mice in high survival rate. Therefore, we may provide more of the functional iTregs to GVHD patients, continuously. It's a good way to prevent the occurrence of GVHD. The result should develop a novel-cell based approach for potentially reducing the risk of acute GVHD clinically. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document