Cardiac fibroblasts: friend or foe?

2006 ◽  
Vol 291 (3) ◽  
pp. H1015-H1026 ◽  
Author(s):  
Troy A. Baudino ◽  
Wayne Carver ◽  
Wayne Giles ◽  
Thomas K. Borg

Cardiac function is determined by the dynamic interaction of various cell types and the extracellular matrix that composes the heart. This interaction varies with the stage of development and the degree and duration of mechanical, chemical, and electrical signals between the various cell types and the ECM. Understanding how these complex signals interact at the molecular, cellular, and organ levels is critical to understanding the function of the heart under a variety of physiological and pathophysiological conditions. Quantitative approaches, both in vivo and in vitro, are essential to understand the dynamic interaction of mechanical, chemical, and electrical stimuli that govern cardiac function. The fibroblast can thus be a friend in normal function or a foe in pathophysiological conditions.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Yi-Li Min ◽  
Svetlana Bezprozvannaya ◽  
Drazen Šošic ◽  
Young-Jae Nam ◽  
Hesham Sadek ◽  
...  

Cardiomyocyte renewal occurs very slowly in adult mammals, and little is known of the genetic basis of cardiac regeneration. Twist is a highly conserved bHLH transcription factor responsible for Drosophila mesoderm formation during embryogenesis. Recent studies have shown that Twist protein is essential for muscle regeneration in adult Drosophila, but the potential role of Twist in the mammalian heart has not been explored. There are two Twist genes in vertebrates, Twist-1 and -2. We show that Twist-1 and -2 are expressed in epicardium and interstitial cells but not in differentiated cardiomyocytes in mice. To understand the potential function of Twist-dependent lineages in the adult heart, we generated inducible Twist2CreERT2; ROSA26-tdTomato reporter mice. By treating these mice with tamoxifen at 8 weeks of age, we observed progressive labeling of various cell types, such as epithelial cells, cardiac fibroblasts, and cardiomyocytes in the heart. We isolated Tomato-positive nonmyocytes from these mice and found that these cells can differentiate into cardiomyocytes and other cell types in vitro. Furthermore, cardiac-specific deletion of both Twist1 and Twist2 resulted in an age-dependent lethal cardiomyopathy. These findings reveal an essential contribution of Twist to long-term maintenance of cardiac function and support the concept of slow, lifelong renewal of cardiomyocytes from a Twist-dependent cell lineage in the adult heart.


2009 ◽  
Vol 296 (5) ◽  
pp. H1694-H1704 ◽  
Author(s):  
Indroneal Banerjee ◽  
John W. Fuseler ◽  
Arti R. Intwala ◽  
Troy A. Baudino

Interleukin-6 (IL-6) is a pleiotropic cytokine responsible for many different processes including the regulation of cell growth, apoptosis, differentiation, and survival in various cell types and organs, including the heart. Recent studies have indicated that IL-6 is a critical component in the cell-cell communication between myocytes and cardiac fibroblasts. In this study, we examined the effects of IL-6 deficiency on the cardiac cell populations, cardiac function, and interactions between the cells of the heart, specifically cardiac fibroblasts and myocytes. To examine the effects of IL-6 loss on cardiac function, we used the IL-6 −/− mouse. IL-6 deficiency caused severe cardiac dilatation, increased accumulation of interstitial collagen, and altered expression of the adhesion protein periostin. In addition, flow cytometric analyses demonstrated dramatic alterations in the cardiac cell populations of IL-6 −/− mice compared with wild-type littermates. We observed a marked increase in the cardiac fibroblast population in IL-6 −/− mice, whereas a concomitant decrease was observed in the other cardiac cell populations examined. Moreover, we observed increased cell proliferation and apoptosis in the developing IL-6 −/− heart. Additionally, we observed a significant decrease in the capillary density of IL-6 −/− hearts. To elucidate the role of IL-6 in the interactions between cardiac fibroblasts and myocytes, we performed in vitro studies and demonstrated that IL-6 deficiency attenuated the activation of the STAT3 pathway and VEGF production. Taken together, these data demonstrate that a loss of IL-6 causes cardiac dysfunction by shifting the cardiac cell populations, altering the extracellular matrix, and disrupting critical cell-cell interactions.


2015 ◽  
Vol 309 (3) ◽  
pp. C139-C147 ◽  
Author(s):  
Sean Martin ◽  
Huey Lin ◽  
Chukwuemeka Ejimadu ◽  
Techung Lee

Recent studies of myocardial infarction in secreted Frizzled-related protein 2 (sFRP2) knockout mice and our hamster heart failure therapy based on sFRP2 blockade have established sFRP2 as a key profibrotic cytokine in the heart. The failing hamster heart is marked by prominent fibrosis and calcification with elevated expression of sFRP2. Noting the involvement of tissue-nonspecific alkaline phosphatase (TNAP) in bone mineralization and vascular calcification, we determined whether sFRP2 might be an upstream regulator of TNAP. Biochemical assays revealed an approximately twofold increase in the activity of TNAP and elevated levels of inorganic phosphate (Pi) in the failing heart compared with the normal heart. Neither was this change detected in the liver or hamstring muscle nor was it associated with systemic hyperphosphatemia. TNAP was readily cloned from the hamster heart and upon overexpression increased the level of extracellular but not intracellular Pi, which is consistent with the cell surface location of the ectoenzyme. In line with the previous demonstration that sFRP2 blockade attenuated fibrosis, we show here that the therapy downregulated TNAP. This in vivo finding is corroborated by the in vitro study showing that cultured cardiac fibroblasts treated with recombinant sFRP2 protein exhibited progressive increase in the expression and activity of TNAP, which was completely abrogated by cycloheximide or tunicamycin. Induction of TNAP by sFRP2 is restricted to cardiac fibroblasts among the multiple cell types examined, and was not observed with sFRP4. The current work indicates that sFRP2 may promote cardiac fibrocalcification through coordinate activation of tolloid-like metalloproteinases and TNAP.


2021 ◽  
Author(s):  
Rui Xiong ◽  
Ning Li ◽  
Wei Wang ◽  
Bo Wang ◽  
Wenyang Jiang ◽  
...  

Abstract Background Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. Methods In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-β to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway. Results In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-β-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757. Conclusions STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1105-1114 ◽  
Author(s):  
F. Poirier ◽  
C.T. Chan ◽  
P.M. Timmons ◽  
E.J. Robertson ◽  
M.J. Evans ◽  
...  

The differentiation in vitro of murine embryonic stem cells to embryoid bodies mimics events that occur in vivo shortly before and after embryonic implantation. We have used this system, together with differential cDNA cloning, to identify genes the expression of which is regulated during early embryogenesis. Here we describe the isolation of several such cDNA clones, one of which corresponds to the gene H19. This gene is activated in extraembryonic cell types at the time of implantation, suggesting that it may play a role at this stage of development, and is subsequently expressed in all of the cells of the mid-gestation embryo with the striking exception of most of those of the developing central and peripheral nervous systems. After birth, expression of this gene ceases or is dramatically reduced in all tissues.


2015 ◽  
Vol 308 (5) ◽  
pp. H424-H434 ◽  
Author(s):  
Tongshuai Chen ◽  
Jingyuan Li ◽  
Junni Liu ◽  
Na Li ◽  
Shujian Wang ◽  
...  

Sirtuins [sirtuin (SIRT)1–SIRT7] mediate the longevity-promoting effects of calorie restriction in yeast, worms, flies, and mice. Additionally, SIRT3 is the only SIRT analog whose increased expression has been shown to be associated with longevity in humans. The polyphenol resveratrol (RSV) is the first compound discovered able to mimic calorie restriction by stimulating SIRTs. In the present study, we report that RSV activated SIRT3 in cardiac fibroblasts both in vivo and in vitro. Moreover, in wild-type mice, RSV prevented cardiac hypertrophy in response to hypertrophic stimuli. However, this protective effect was not observed in SIRT3 knockout mice. Additionally, the activation of SIRT3 by RSV ameliorated collagen deposition and improved cardiac function. In isolated cardiac fibroblasts, pretreatment with RSV suppressed fibroblast-to-myoblast transformation by inhibiting the transforming growth factor-β/Smad3 pathway. Therefore, these data indicate that the activation of SIRT3 by RSV could ameliorate cardiac fibrosis and improve cardiac function via the transforming growth factor-β/Smad3 pathway.


2021 ◽  
Author(s):  
Rui Xiong ◽  
Ning Li ◽  
Bohao Liu ◽  
Ruyuan He ◽  
Wenyang Jiang ◽  
...  

Abstract Background: Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. Methods: In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-β to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway.Results: In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-β-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757.Conclusion: STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure.


Reproduction ◽  
2004 ◽  
Vol 127 (6) ◽  
pp. 679-688 ◽  
Author(s):  
Paul A Fowler ◽  
Norah Spears

Gonadotrophin surge-attenuating factor (GnSAF) bioactivity (the suppression of GnRH-induced but not basal LH and FSH secretion from pituitary gonadotrophs) is produced by granulosa cells in vitro. Previous studies to investigate this bioactivity used dispersed granulosa cells which lack some cell types and the structural components of the follicle in vivo. The aim of this study, therefore, was to investigate whether intact rodent follicle culture was a suitable model for the study of the production of GnSAF bioactivity, allowing GnSAF to be investigated in a more physiologically realistic environment while still retaining culture conditions from which, as with granulosa cell cultures, extraneous factors can be excluded. Follicles from 16-day-old rats and 21-day-old mice were cultured for 3–6 days in the presence or absence of FSH and/or LH. The follicle-conditioned medium, and matching samples of unconditioned culture medium were added to our established rat pituitary monolayer GnSAF bioassay. Both mouse and rat intact follicles produced GnSAF bioactivity, reducing GnRH-induced LH secretion significantly. GnSAF output from the mouse follicles was highest during days 1–3 of culture, when follicles were at an early antral stage of development, and fell on days 4–6 as the follicles grew to the mid antral stage. While the stimulatory effects of FSH on rat follicle GnSAF secretion was dose-dependent, LH alone did not increase GnSAF production. An antibody against human GnSAF blocked GnSAF bioactivity produced by rat follicles, and recognised proteins within the expected pI and molecular weight range for GnSAF in two-dimensional gels of rat follicle-conditioned medium, showing a good homology between rodent and human GnSAF proteins. In conclusion, the release of GnSAF bioactivity is principally from small follicles stimulated by FSH. Therefore, intact rodent follicle culture systems offer an excellent model for the investigation of factors controlling GnSAF production under relatively physiological conditions.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document