Transgenic upregulation ofIK1in the mouse heart leads to multiple abnormalities of cardiac excitability
To assess the functional significance of upregulation of the cardiac current ( IK1), we have produced and characterized the first transgenic (TG) mouse model of IK1upregulation. To increase IK1density, a pore-forming subunit of the Kir2.1 (green fluorescent protein-tagged) channel was expressed in the heart under control of the α-myosin heavy chain promoter. Two lines of TG animals were established with a high level of TG expression in all major parts of the heart: line 1 mice were characterized by 14% heart hypertrophy and a normal life span; line 2 mice displayed an increased mortality rate, and in mice ≤1 mo old, heart weight-to-body weight ratio was increased by >100%. In adult ventricular myocytes expressing the Kir2.1-GFP subunit, IK1conductance at the reversal potential was increased ∼9- and ∼10-fold in lines 1 and 2, respectively. Expression of the Kir2.1 transgene in line 2 ventricular myocytes was heterogeneous when assayed by single-cell analysis of GFP fluorescence. Surface ECG recordings in line 2 mice revealed numerous abnormalities of excitability, including slowed heart rate, premature ventricular contractions, atrioventricular block, and atrial fibrillation. Line 1 mice displayed a less severe phenotype. In both TG lines, action potential duration at 90% repolarization and monophasic action potential at 75–90% repolarization were significantly reduced, leading to neuronlike action potentials, and the slow phase of the T wave was abolished, leading to a short Q-T interval. This study provides a new TG model of IK1upregulation, confirms the significant role of IK1in cardiac excitability, and is consistent with adverse effects of IK1upregulation on cardiac electrical activity.