Transgenic upregulation ofIK1in the mouse heart leads to multiple abnormalities of cardiac excitability

2004 ◽  
Vol 287 (6) ◽  
pp. H2790-H2802 ◽  
Author(s):  
Jingdong Li ◽  
Meredith McLerie ◽  
Anatoli N. Lopatin

To assess the functional significance of upregulation of the cardiac current ( IK1), we have produced and characterized the first transgenic (TG) mouse model of IK1upregulation. To increase IK1density, a pore-forming subunit of the Kir2.1 (green fluorescent protein-tagged) channel was expressed in the heart under control of the α-myosin heavy chain promoter. Two lines of TG animals were established with a high level of TG expression in all major parts of the heart: line 1 mice were characterized by 14% heart hypertrophy and a normal life span; line 2 mice displayed an increased mortality rate, and in mice ≤1 mo old, heart weight-to-body weight ratio was increased by >100%. In adult ventricular myocytes expressing the Kir2.1-GFP subunit, IK1conductance at the reversal potential was increased ∼9- and ∼10-fold in lines 1 and 2, respectively. Expression of the Kir2.1 transgene in line 2 ventricular myocytes was heterogeneous when assayed by single-cell analysis of GFP fluorescence. Surface ECG recordings in line 2 mice revealed numerous abnormalities of excitability, including slowed heart rate, premature ventricular contractions, atrioventricular block, and atrial fibrillation. Line 1 mice displayed a less severe phenotype. In both TG lines, action potential duration at 90% repolarization and monophasic action potential at 75–90% repolarization were significantly reduced, leading to neuronlike action potentials, and the slow phase of the T wave was abolished, leading to a short Q-T interval. This study provides a new TG model of IK1upregulation, confirms the significant role of IK1in cardiac excitability, and is consistent with adverse effects of IK1upregulation on cardiac electrical activity.

EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
J Obergassel ◽  
S N Kabir ◽  
M O"reilly ◽  
L C Sommerfeld ◽  
C O"shea ◽  
...  

Abstract Funding Acknowledgements Supported by EU [CATCH ME] 633196, British Heart Foundation FS/13/43/30324, AA/18/2/34218 LF, PK, DFG FA413 LF, Studienstiftung to JO. Background Studying cardiac electrophysiology in isolated perfused beating murine hearts is a well-established method. The range of normal values for left atrial action potential durations (LA-APD), activation times (LA-AT) and effective refractory periods (atrial ERP) in murine wildtype (WT) is not well known. Purpose This study aimed to establish reference values for LA-APD, LA-AT and atrial ERP and to identify factors that influence these electrophysiological parameters in wildtype (WT) mice. Method We combined results from isolated beating heart Langendorff experiments carried out in WT between 2005 and 2019 using an octopolar catheter inserted into the right atrium and a monophasic action potential electrode recording from the LA epicardium. Electrophysiological parameters (LA-APD at 50%, 70%, 90% repolarization (APD50, APD70, APD90), LA-AT and atrial ERP) at different pacing cycle lengths (PCL) were summarized. We analyzed effects of PCL, genetic background, age, gender, heart weight to body weight ratio (HW/BW), LA weight to body weight ratio (LAW/BW) as well as coronary flow and temperature as experimental conditions. Results Electrophysiological parameters from 222 isolated hearts (114 female, mean age 6.6 ± 0.25 months, range 2.47-17.7 months) of different backgrounds (77 C57BL/6, 23 FVB/N, 33 MF1, 69 129/Sv and 20 Swiss agouti) were combined. Coronary flow rate, flow temperature and start of isolation to cannulation time were constant experimental conditions over the timespan of experiments. LA-APD was longer while LA-AT decreased with longer PCL throughout all genetic backgrounds (Figure 1A). Genetic background showed strong effects on all electrophysiological parameters. LA activation was delayed in 129/Sv compared to other backgrounds (Figure 1D). LA-APD70 and atrial ERP were significantly shorter in Swiss agouti background compared to others. LA-APD70 was also significantly prolonged in 129/Sv background compared to MF1 (Figure 1C). Atrial ERP was longer in FVB/N compared to other backgrounds. Age effects were compared in groups. Atrial ERP was significantly longer in mice ≤ 3 months compared to all older mice. Atrial ERP was also significantly prolonged (+ 3.4ms, + 13.5%) in female mice compared to males (Figure 1B). Conclusion This dataset summarizes left atrial electrophysiological parameters in the beating mouse heart and can serve as a reference for design and interpretation of electrophysiological experiments in murine models of commonly used genetic backgrounds. We confirm that cycle length, genetic background, age and gender affect atrial electrophysiological parameters. Awareness of these will support successful experimental design. Abstract Figure 1


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Georgios Kararigas ◽  
Ba Tiep Nguyen ◽  
Hubertus Jarry ◽  
Vera Regitz-Zagrosek

Estradiol-17beta (E2) has been shown to exert anti-hypertrophic actions by either attenuating or blunting the development of left ventricular hypertrophy. However, the vast majority of these studies have been performed in stressed or diseased hearts. Consequently, very little is known about the actions of E2 in the stress- and disease-free heart. The aim of our study was to identify and characterize structurally and molecularly the role of E2 in the healthy heart. Female C57Bl/6J mice were ovariectomized at the age of two months. Mice were randomly assigned into groups feeding on either an E2-containing (n = 19) or soy-free (Ctrl; n = 19) diet for three months. Following this, all mice were sacrificed and hearts were collected for weight measurement. Left ventricles were analyzed structurally by immunohistochemistry and molecularly by genome-wide expression profiling. E2 led to an increase in the heart weight (11%; P < 0.001) and the heart-to-body weight ratio (32%; P < 0.001) compared to Ctrl mice. Cardiomyocyte cross-sectional area revealed cardiomyocyte hypertrophy in E2 (n = 6) compared to Ctrl (n = 5) mice (32%; P = 0.004). Analysis of the left ventricular transcriptome identified 1059 probe sets (adjusted P ≤ 0.05) differentially expressed between E2 (n = 5) and Ctrl (n = 5). Hypergeometric testing for Gene Ontology showed most genes to be associated with cell cycle, regulation of growth, cell and tissue development. Pathway analysis revealed 140 pathways (adjusted P = 0.05) modulated between the two groups, such as the DNA replication and Wnt signaling pathways. Next, we tested the hypothesis that this hypertrophic effect of E2 is of the physiological type. To this extent, we identified that angiogenesis was increased with cardiac growth as determined by the microarray analysis and VEGF-A protein levels assessed by Western blotting. Furthermore, the embryonic gene program was not activated and no fibrosis was observed in the E2-treated group. In conclusion, our study is the first to demonstrate pro-hypertrophic actions of E2 in the healthy heart through the modulation of growth-related genes and pathways. Due to that we have characterized the hypertrophic effect of E2 as physiological, we expect this effect to be beneficial for the heart.


2000 ◽  
Vol 278 (4) ◽  
pp. H1105-H1116 ◽  
Author(s):  
Alan D. Wickenden ◽  
Roger Kaprielian ◽  
Xiao-Mang You ◽  
Peter H. Backx

Previous studies have established that reductions in repolarizing currents occur in heart disease and can contribute to life-threatening arrhythmias in myocardium. In this study, we investigated whether the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) could restore repolarizing transient outward K+ current ( I to) density and gene expression in rat myocardium after myocardial infarction (MI). Our findings show that I to density was reduced after MI (14.0 ± 1.0 vs. 10.2 ± 0.9 pA/pF, sham vs. post-MI at +40 mV). mRNA levels of Kv4.2 and Kv4.3genes were decreased but Kv1.4 mRNA levels were increased post-MI. Corresponding changes in Kv4.2 and Kv1.4 protein were also observed. Chronic treatment of post-MI rats with 10 mg/kg DITPA restored I to density (to 15.2 ± 1.1 pA/pF at +40 mV) as well as Kv4.2 and Kv1.4 expression to levels observed in sham-operated controls. Other membrane currents (Na+, L-type Ca2+, sustained, and inward rectifier K+ currents) were unaffected by DITPA treatment. Associated with the changes in I toexpression, action potential durations (current-clamp recordings in isolated single right ventricular myocytes and monophasic action potential recordings from the right free wall in situ) were prolonged after MI and restored with DITPA treatment. Our results demonstrate that DITPA restores I to density in the setting of MI, which may be useful in preventing complications associated with I to downregulation.


1996 ◽  
Vol 270 (6) ◽  
pp. H2088-H2093 ◽  
Author(s):  
L. Wang ◽  
H. J. Duff

Although the genetics of mammalian cardiac K+ channels have been most intensively investigated in mice, there are limited data available from the electrophysiological studies of the K+ currents in native mouse cardiac myocytes, especially in fetal mouse heart. The present study utilized whole cell patch-clamp techniques to assess the delayed rectifier K+ current (IK) in fetal (18th day of gestation) mouse ventricular myocytes. IK in fetal mouse ventricular myocytes activated rapidly, displayed a negative slope conductance of the current-voltage relationships at test potentials > 0 mV, satisfied the envelope of IK-tail test for a single component, and was very sensitive to dofetilide. These characteristics confirm that this current is the rapidly activating component of IK known as IK,r. In addition, dofetilide dramatically prolonged action potential duration in single ventricular myocytes as well as in ventricular myocardium, suggesting that IK,r plays a dominant role in action potential repolarization in fetal mouse heart. From these data we can conclude that fetal mouse cardiac myocytes express IK,r, which functions as a dominant repolarizing K+ current.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Mannix Messier ◽  
Ruijie Liu ◽  
Jeffery Molkentin

Background: Protein phosphatase 1 is the major protein serine/threonine phosphatase in nearly all mammalian tissues, where it consists of three isoforms PP1α, PP1β, and PP1γ. However, the redundant or specific roles of each isoform in the heart is not known Methods: Each PP1 isoform was conditionally deleted in the mouse heart using a Cre-loxP approach. LoxP sites were introduced into intron 1 and 3 of each PP1α and PP1β. Both loxP-targeted lines were bred with mice expressing β-myosin heavy chain promoter driven Cre to achieve isoform specific gene deletion in the heart. Echocardiography was performed in these mice at different ages. We also investigated protein phosphorylation status of selected PP1 targets that underlie cardiac contraction and calcium handling from the hearts of these deleted mice. Results: Heart-specific deletion of PP1α caused a reduction of fractional shortening and worsening of cardiac function. Two weeks after transaortic constriction (TAC), PP1α deleted mice had greater increases in heart-weight to body-weight ratio compared with control mice, suggesting that PP1α was important for proper cardiac compensation. Interestingly, however, combined deletion of both PP1α and PP1β rescued the cardiac performance defects observed in PP1α deleted mice. Mechanistically, we found that deletion of PP1αβ led to increased phospholamban serine 16 and threonine 17 phosphorylation compared to that of PP1α. In conclusion, we showed that PP1 isoforms play distinct roles in the heart in regulating contractility and compensation after pressure overload stimulation.


1999 ◽  
Vol 276 (2) ◽  
pp. H608-H613 ◽  
Author(s):  
Weiran Liu ◽  
Kenji Yasui ◽  
Akiko Arai ◽  
Kaichiro Kamiya ◽  
Jianhua Cheng ◽  
...  

Little information is available concerning the modulation of cardiac function by β-adrenergic agonists in early-stage embryonic mammalian heart. We have examined the effects of isoproterenol (Iso) on the spontaneous beating rate and action potential (AP) configuration in embryonic mouse hearts at 9.5 days postcoitum (dpc), just 1 day after they started to beat. Iso (3 μM) increased the spontaneous beating rate in whole hearts, dissected ventricles, and isolated ventricular myocytes. In ventricular myocytes, Iso also increased the slope of the pacemaker potential and the action potential duration but decreased the maximum upstroke velocity. In whole cell voltage-clamp experiments, the Ca2+-channel currents were measured as Ba2+ currents ( I Ba). In 9.5-dpc myocytes, I Ba was enhanced significantly from −4.7 ± 0.9 to −6.7 ± 1.2 pA/pF (by 52.4 ± 14.8%, n = 10) after the application of Iso. Propranolol (3 μM) reversed the effect of Iso. Forskolin (For, 10 μM) produced an increase in I Ba by 95.5 ± 18.8% ( n = 8). In ventricular myocytes at a late embryonic stage (18 dpc), 3 μM Iso caused an appreciably greater increase in I Ba from −6.2 ± 0.5 to −14.5 ± 2.2 pA/pF (by 137.8 ± 33.0%, n = 8), whereas the increase in I Ba by 10 μM For (by 120.0 ± 23.0%, n = 7) was comparable to that observed in the early stage (9.5 dpc). These results indicate that the L-type Ca2+-channel currents are modulated by β-adrenergic receptors in the embryonic mouse heart as early as 9.5 dpc, probably via a cAMP-dependent pathway.


2001 ◽  
Vol 280 (3) ◽  
pp. H1039-H1050 ◽  
Author(s):  
Farah Sheikh ◽  
David P. Sontag ◽  
Robert R. Fandrich ◽  
Elissavet Kardami ◽  
Peter A. Cattini

We generated transgenic (TG) mice overexpressing fibroblast growth factor (FGF)-2 protein (22- to 34-fold) in the heart. Chronic FGF-2 overexpression revealed no significant effect on heart weight-to-body weight ratio or expression of cardiac differentiation markers. There was, however, a significant 20% increase in capillary density. Although there was no change in FGF receptor-1 expression, relative levels of phosphorylated c-Jun NH2-terminal kinase and p38 kinase as well as of membrane-associated protein kinase C (PKC)-α and total PKC-ε were increased in FGF-2-TG mouse hearts. An isolated mouse heart model of ischemia-reperfusion injury was used to assess the potential of increased endogenous FGF-2 for cardioprotection. A significant 34–45% increase in myocyte viability, reflected in a decrease in lactate dehydrogenase released into the perfusate, was observed in FGF-2 overexpressing mice and non-TG mice treated exogenously with FGF-2. In conclusion, FGF-2 overexpression causes augmentation of signal transduction pathways and increased resistance to ischemic injury. Thus, stimulation of endogenous FGF-2 expression offers a potential mechanism to enhance cardioprotection.


2007 ◽  
Vol 292 (1) ◽  
pp. H614-H621 ◽  
Author(s):  
Björn C. Knollmann ◽  
Tilmann Schober ◽  
Andreas O. Petersen ◽  
Syevda G. Sirenko ◽  
Michael R. Franz

Transgenic mice have been increasingly utilized to investigate the molecular mechanisms of cardiac arrhythmias, yet the rate dependence of the murine action potential duration and the electrical restitution curve (ERC) remain undefined. In the present study, 21 isolated, Langendorff-perfused, and atrioventricular node-ablated mouse hearts were studied. Left ventricular and left atrial action potentials were recorded using a validated miniaturized monophasic action potential probe. Murine action potentials (AP) were measured at 30, 50, 70, and 90% repolarization (APD30–APD90) during steady-state pacing and varied coupling intervals to determine ERCs. Murine APD showed rate adaptation as well as restitution properties. The ERC time course differed dramatically between early and late repolarization: APD30 shortened with increasing S1–S2 intervals, whereas APD90 was prolonged. When fitted with a monoexponential function, APD30 reached plateau values significantly faster than APD90 (τ = 29 ± 2 vs. 78 ± 6 ms, P < 0.01, n = 12). The slope of early APD90 restitution was significantly <1 (0.16 ± 0.02). Atrial myocardium had shorter final repolarization and significantly faster ERCs that were shifted leftward compared with ventricular myocardium. Recovery kinetics of intracellular Ca2+ transients recorded from isolated ventricular myocytes at 37°C (τ = 93 ± 4 ms, n = 18) resembled the APD90 ERC kinetics. We conclude that mouse myocardium shows AP cycle length dependence and electrical restitution properties that are surprisingly similar to those of larger mammals and humans.


1997 ◽  
Vol 272 (6) ◽  
pp. H2833-H2842 ◽  
Author(s):  
J. K. Lee ◽  
I. Kodama ◽  
H. Honjo ◽  
T. Anno ◽  
K. Kamiya ◽  
...  

Sequential changes in action potential configuration, 4-amino-pyridine-sensitive transient outward current (Ito), and L-type calcium current (ICa) in association with hypertrophy were investigated in ventricular myocytes from rats with monocrotaline (MCT)-induced pulmonary hypertension. The tissue weight ratio of right ventricle (RV) to left ventricle plus septum 14 and 28 days after a subcutaneous injection of MCT increased by 29.7 and 77.2%, respectively. Action potential duration (APD) of RV cells from MCT rats increased progressively, prolonged by 73.2 and 92.2% on days 14 and 28, respectively. The current density of Ito in RV cells from MCT rats on day 14 (32.5 +/- 4.5 pA/pF, n = 13) was significantly larger than in controls (26.8 +/- 4.5 pA/pF, n = 8; P < 0.05). On day 28, however, Ito density in MCT rats (15.3 +/- 4.6 pA/pF, n = 9) was significantly less than in controls (27.3 +/- 4.2 pA/pF, n = 10; P < 0.05). There were no differences in the voltage dependence of steady-state activation and inactivation of Ito between MCT and control rats. ICa density in MCT rats on day 14 (15.7 +/- 2.6 pA/pF, n = 10) was significantly larger than in controls (10.0 +/- 2.3 pA/pF, n = 10; P < 0.05), but there was no significant difference in Ito density between MCT rats (8.3 +/- 3.7 pA/pF, n = 10) and controls (11.6 +/- 3.0 pA/pF, n = 10) on day 28. These findings suggest that hypertrophy of mammalian hearts may cause stage-dependent changes in Ito and ICa density of ventricular myocytes. The APD prolongation in the early stage of hypertrophy may be caused mainly by an increase in ICa density, whereas the APD prolongation in the late stage may be ascribed to a reduction in Ito density.


1991 ◽  
Vol 260 (3) ◽  
pp. H935-H942 ◽  
Author(s):  
X. P. Xu ◽  
P. M. Best

Cardiac hypertrophy and heart failure are common to acromegalic patients who have abnormally high serum growth hormone (GH). While the function of cardiac muscle is clearly affected by chronically elevated GH, the electrical activity of myocytes from hearts with GH-dependent hypertrophy has not been studied. We used adult, female Wistar-Furth rats with induced GH-secreting tumors to study the effect of excessive GH on ion channels of cardiac myocytes. GH-secreting tumors were induced by subcutaneous inoculation of GH3 cells. Eight weeks after inoculation, the rats had doubled their body weight and heart size compared with age-matched controls. There were no differences in either action potential amplitude or resting potential of right ventricular myocytes from control and tumor-bearing rats. However, action potential duration increased significantly in tumor-bearing rats; the time to 50% repolarization was 23 +/- 14 ms (n = 10) compared with 6.6 +/- 1.5 ms (n = 14) in controls. The prolongation of the action potential was mainly due to a decrease in density of a transient outward current (It,o) carried by K+. The normalized conductance for It,o decreased from 0.53 +/- 0.10 nS/pF (n = 25) in controls to 0.33 +/- 0.09 nS/pF (n = 26) in tumor-bearing rats. The decrease in It,o) and increase in heart weight occurred with a similar time course. The increased action potential duration prolongs Ca2+ influx through L-type Ca2+ channels in the tumor-bearing animals; this may be important in cardiovascular adaptation.


Sign in / Sign up

Export Citation Format

Share Document