High-resolution imaging reveals a limit in spatial resolution of blood flow measurements by microspheres

2004 ◽  
Vol 287 (3) ◽  
pp. H1132-H1140 ◽  
Author(s):  
Ulrich K. M. Decking ◽  
Vinay M. Pai ◽  
Eric Bennett ◽  
Joni L. Taylor ◽  
Christian D. Fingas ◽  
...  

Density of 15-μm microspheres after left atrial application is the standard measure of regional perfusion. In the heart, substantial differences in microsphere density are seen at spatial resolutions <5 ml, implying perfusion heterogeneity. Microsphere deposition imaging permits a superior evaluation of the distribution pattern. Therefore, fluorescent microspheres (FMS) were applied, FMS deposition in the canine heart was imaged by epifluorescence microscopy in vitro, and the patterns were observed compared with MR images of iron oxide microspheres (IMS) obtained in vivo and in vitro. FMS deposition in myocardial slices revealed the following: 1) a nonrandom distribution, with sequentially applied FMS of different color stacked within the same vessel, 2) general FMS clustering, and 3) rather large areas devoid of FMS ( n = 3). This pattern was also seen in reconstructed three-dimensional images (<1 nl resolution) of FMS distribution ( n = 4). Surprisingly, the deposition pattern of sequentially applied FMS remained virtually identical over 3 days. Augmenting flow by intracoronary adenosine (>2 μM) enhanced local microsphere density, but did not alter the deposition pattern ( n = 3). The nonrandom, temporally stable pattern was quantitatively confirmed by a three-dimensional intermicrosphere distance analysis of sequentially applied FMS. T2-weighted short-axis MR images (2-μl resolution) of IMS revealed similar patterns in vivo and in vitro ( n = 6), as seen with FMS. The observed temporally stable microsphere patterns are not consistent with the notion that microsphere deposition is solely governed by blood flow. We propose that at high spatial resolution (<2 μl) structural aspects of the vascular network dominate microsphere distribution, resulting in the organized patterns observed.

2019 ◽  
Vol 317 (1) ◽  
pp. E139-E146 ◽  
Author(s):  
Carl Johan Drott ◽  
Petra Franzén ◽  
Per-Ola Carlsson

The peptide ghrelin is mainly produced in some of the epithelial cells in the stomach, but also, during starvation, by the ε-cells in the endocrine pancreas. Ghrelin, as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R1α), exerts a variety of metabolic functions including stimulation of appetite and weight gain. Its complete role is not yet fully understood, including whether it has any vascular functions. The present study evaluated if ghrelin affects pancreatic and islet blood flow. Ghrelin and the GHS-R1α receptor antagonist GHRP-6 were injected intravenously in rats followed by blood flow measurements using a microsphere technique. Ghrelin decreased, while GHRP-6 in fasted, but not fed, rats selectively increased islet blood flow fourfold. GHS-R1α was identified not only on glucagon-producing cells but also seemed to be present in the islet arterioles. GHRP-6 in fasted rats, only, also improved the peak insulin response to glucose in vivo, thereby substantially blunting the hyperglycemia. GHRP-6 doubled glucose-stimulated insulin release in vitro of both islets obtained from fed and fasted rats. Our results indicate a novel role for endogenous ghrelin acting directly or indirectly as a local vasoconstrictor in the islets during fasting, thereby restricting the insulin response to hyperglycemia. This is to the best of our knowledge the first report that shows this physiological mechanism to restrict insulin delivery from the islets by acting on the vasculature; a mode of action that can be envisaged to complement the previously well-described mechanisms of ghrelin acting directly on the islet endocrine cells.


2012 ◽  
Vol 32 (7) ◽  
pp. 1259-1276 ◽  
Author(s):  
Anna Devor ◽  
Sava Sakadžić ◽  
Vivek J Srinivasan ◽  
Mohammad A Yaseen ◽  
Krystal Nizar ◽  
...  

In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.


2004 ◽  
Vol 820 ◽  
Author(s):  
E.J. Weinberg ◽  
J.T. Borenstein ◽  
M.R. Kaazempur-Mofrad ◽  
B. Orrick ◽  
J.P. Vacanti

AbstractRecent progress in microfabrication of biodegradable materials has resulted in the development of a three-dimensional construct suitable for use as a scaffold for engineering blood vessel networks. These networks are designed to replicate the critical fluid dynamic properties of physiological systems such as the microcirculation within a vital organ. Ultimately, these 3D microvascular constructs will serve as a framework for population with organ-specific cells for applications in organ assist and organ replacement. This approach for tissue engineering utilizes highly engineered designs and microfabrication technology to assemble cells in three-dimensional constructs which have physiological values for properties such as mechanical strength, oxygen, nutrient and waste transport, and fluidic parameters such as flow volume and pressure.Three-dimensional networks with appropriate values for blood flow velocity, pressure drop and hematocrit distribution have been designed and fabricated using replica molding techniques, and populated with endothelial cells for long-term microfluidic cell culture. One critical aspect of the fluid dynamics of these systems is the shear stress exerted by blood flow at the walls of the vessel; a key parameter because of well-known mechanotransduction phenomena from mechanical shear forces which govern endothelial cell behavior. In this work, we report the design and construction of three-dimensional microfluidic constructs for tissue engineering which have uniform wall shear stress throughout the network. This type of control over the shear stress offers several advantages over earlier approaches, including more uniform seeding, more rapid achievement of confluent coatings, and better control over endothelial cell behavior for in vitro and in vivo studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Wijdenes ◽  
K. Haider ◽  
C. Gavrilovici ◽  
B. Gunning ◽  
M. D. Wolff ◽  
...  

AbstractNeural recordings made to date through various approaches—both in-vitro or in-vivo—lack high spatial resolution and a high signal-to-noise ratio (SNR) required for detailed understanding of brain function, synaptic plasticity, and dysfunction. These shortcomings in turn deter the ability to further design diagnostic, therapeutic strategies and the fabrication of neuro-modulatory devices with various feedback loop systems. We report here on the simulation and fabrication of fully configurable neural micro-electrodes that can be used for both in vitro and in vivo applications, with three-dimensional semi-insulated structures patterned onto custom, fine-pitch, high density arrays. These microelectrodes were interfaced with isolated brain slices as well as implanted in brains of freely behaving rats to demonstrate their ability to maintain a high SNR. Moreover, the electrodes enabled the detection of epileptiform events and high frequency oscillations in an epilepsy model thus offering a diagnostic potential for neurological disorders such as epilepsy. These microelectrodes provide unique opportunities to study brain activity under normal and various pathological conditions, both in-vivo and in in-vitro, thus furthering the ability to develop drug screening and neuromodulation systems that could accurately record and map the activity of large neural networks over an extended time period.


2004 ◽  
Vol 823 ◽  
Author(s):  
E.J. Weinberg ◽  
J.T. Borenstein ◽  
M.R. Kaazempur-Mofrad ◽  
B. Orrick ◽  
J.P. Vacanti

AbstractRecent progress in microfabrication of biodegradable materials has resulted in the development of a three-dimensional construct suitable for use as a scaffold for engineering blood vessel networks. These networks are designed to replicate the critical fluid dynamic properties of physiological systems such as the microcirculation within a vital organ. Ultimately, these 3D microvascular constructs will serve as a framework for population with organ-specific cells for applications in organ assist and organ replacement. This approach for tissue engineering utilizes highly engineered designs and microfabrication technology to assemble cells in three-dimensional constructs which have physiological values for properties such as mechanical strength, oxygen, nutrient and waste transport, and fluidic parameters such as flow volume and pressure.Three-dimensional networks with appropriate values for blood flow velocity, pressure drop and hematocrit distribution have been designed and fabricated using replica molding techniques, and populated with endothelial cells for long-term microfluidic cell culture. One critical aspect of the fluid dynamics of these systems is the shear stress exerted by blood flow at the walls of the vessel; a key parameter because of well-known mechanotransduction phenomena from mechanical shear forces which govern endothelial cell behavior. In this work, we report the design and construction of three-dimensional microfluidic constructs for tissue engineering which have uniform wall shear stress throughout the network. This type of control over the shear stress offers several advantages over earlier approaches, including more uniform seeding, more rapid achievement of confluent coatings, and better control over endothelial cell behavior for in vitro and in vivo studies.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Sign in / Sign up

Export Citation Format

Share Document