scholarly journals Oxidative stress and heart failure

2011 ◽  
Vol 301 (6) ◽  
pp. H2181-H2190 ◽  
Author(s):  
Hiroyuki Tsutsui ◽  
Shintaro Kinugawa ◽  
Shouji Matsushima

Oxidative stress, defined as an excess production of reactive oxygen species (ROS) relative to antioxidant defense, has been shown to play an important role in the pathophysiology of cardiac remodeling and heart failure (HF). It induces subtle changes in intracellular pathways, redox signaling, at lower levels, but causes cellular dysfunction and damage at higher levels. ROS are derived from several intracellular sources, including mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. The production of ROS is increased within the mitochondria from failing hearts, whereas normal antioxidant enzyme activities are preserved. Chronic increases in ROS production in the mitochondria lead to a catastrophic cycle of mitochondrial DNA (mtDNA) damage as well as functional decline, further ROS generation, and cellular injury. ROS directly impair contractile function by modifying proteins central to excitation-contraction coupling. Moreover, ROS activate a broad variety of hypertrophy signaling kinases and transcription factors and mediate apoptosis. They also stimulate cardiac fibroblast proliferation and activate the matrix metalloproteinases, leading to the extracellular matrix remodeling. These cellular events are involved in the development and progression of maladaptive myocardial remodeling and failure. Oxidative stress is also involved in the skeletal muscle dysfunction, which may be associated with exercise intolerance and insulin resistance in HF. Therefore, oxidative stress is involved in the pathophysiology of HF in the heart as well as in the skeletal muscle. A better understanding of these mechanisms may enable the development of novel and effective therapeutic strategies against HF.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takashi Yokota ◽  
Shintaro Kinugawa ◽  
Kagami Hirabayashi ◽  
Mayumi Yamato ◽  
Shingo Takada ◽  
...  

AbstractOxidative stress plays a role in the progression of chronic heart failure (CHF). We investigated whether systemic oxidative stress is linked to exercise intolerance and skeletal muscle abnormalities in patients with CHF. We recruited 30 males: 17 CHF patients, 13 healthy controls. All participants underwent blood testing, cardiopulmonary exercise testing, and magnetic resonance spectroscopy (MRS). The serum thiobarbituric acid reactive substances (TBARS; lipid peroxides) were significantly higher (5.1 ± 1.1 vs. 3.4 ± 0.7 μmol/L, p < 0.01) and the serum activities of superoxide dismutase (SOD), an antioxidant, were significantly lower (9.2 ± 7.1 vs. 29.4 ± 9.7 units/L, p < 0.01) in the CHF cohort versus the controls. The oxygen uptake (VO2) at both peak exercise and anaerobic threshold was significantly depressed in the CHF patients; the parameters of aerobic capacity were inversely correlated with serum TBARS and positively correlated with serum SOD activity. The phosphocreatine loss during plantar-flexion exercise and intramyocellular lipid content in the participants' leg muscle measured by 31phosphorus- and 1proton-MRS, respectively, were significantly elevated in the CHF patients, indicating abnormal intramuscular energy metabolism. Notably, the skeletal muscle abnormalities were related to the enhanced systemic oxidative stress. Our analyses revealed that systemic oxidative stress is related to lowered whole-body aerobic capacity and skeletal muscle dysfunction in CHF patients.


2009 ◽  
Vol 106 (5) ◽  
pp. 1631-1640 ◽  
Author(s):  
Aline V. N. Bacurau ◽  
Maíra A. Jardim ◽  
Julio C. B. Ferreira ◽  
Luiz R. G. Bechara ◽  
Carlos R. Bueno ◽  
...  

Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both α2A- and α2C-adrenergic receptor subtypes (α2A/α2CARKO mice) that present SH with evidence of HF by 7 mo. To verify whether exercise training (ET) would prevent skeletal muscle myopathy in advanced-stage HF, α2A/α2CARKO mice were exercised from 5 to 7 mo of age. At 3 mo, α2A/α2CARKO mice showed no signs of HF and preserved exercise tolerance and muscular norepinephrine with no changes in soleus morphology. In contrast, plantaris muscle of α2A/α2CARKO mice displayed hypertrophy and fiber type shift (IIA → IIX) paralleled by capillary rarefaction, increased hexokinase activity, and oxidative stress. At 7 mo, α2A/α2CARKO mice displayed exercise intolerance and increased muscular norepinephrine, muscular atrophy, capillary rarefaction, and increased oxidative stress. ET reestablished α2A/α2CARKO mouse exercise tolerance to 7-mo-old wild-type levels and prevented muscular atrophy and capillary rarefaction associated with reduced oxidative stress. Collectively, these data provide direct evidence that SH is a major factor contributing to skeletal muscle morphological changes in a setting of developing HF. ET prevented skeletal muscle myopathy in α2A/α2CARKO mice, which highlights its importance as a therapeutic tool for HF.


2015 ◽  
Vol 35 (1) ◽  
pp. 148-159 ◽  
Author(s):  
Paula F. Martinez ◽  
Camila Bonomo ◽  
Daniele M. Guizoni ◽  
Silvio A. Oliveira Junior ◽  
Ricardo L. Damatto ◽  
...  

Background: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. Methods and Results: Four months after MI, rats were assigned to Sham, MI-C (without treatment), and MI-NAC (treated with N-acetylcysteine) groups. Two months later, echocardiogram showed left ventricular dysfunction in MI-C; NAC attenuated diastolic dysfunction. In soleus muscle, glutathione peroxidase and superoxide dismutase activity was decreased in MI-C and unchanged by NAC. 3-nitrotyrosine was similar in MI-C and Sham, and lower in MI-NAC than MI-C. Total reactive oxygen species (ROS) production was assessed by HPLC analysis of dihydroethidium (DHE) oxidation fluorescent products. The 2-hydroxyethidium (EOH)/DHE ratio did not differ between Sham and MI-C and was higher in MI-NAC. The ethidium/DHE ratio was higher in MI-C than Sham and unchanged by NAC. NADPH oxidase activity was similar in Sham and MI-C and lower in MI-NAC. Gene expression of p47phox was lower in MI-C than Sham. NAC decreased NOX4 and p22phox expression. Conclusions: We corroborate the case that oxidative stress is increased in skeletal muscle of heart failure rats and show for the first time that oxidative stress is not related to increased NADPH oxidase activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryosuke Shirakawa ◽  
Takashi Yokota ◽  
Takayuki Nakajima ◽  
Shingo Takada ◽  
Miwako Yamane ◽  
...  

Abstract Systemic oxidative stress plays a key role in the development of chronic heart failure (CHF). We tested the hypothesis that mitochondrial reactive oxygen species (ROS) generation in circulating peripheral blood mononuclear cells (PBMCs) contributes to CHF progression. A total of 31 patients who had a history of hospital admission due to worsening HF were enrolled and grouped as having either mild CHF defined as New York Heart Association (NYHA) functional class I-II or moderate-to-severe CHF defined as NYHA functional class III. ROS levels in PBMC mitochondria were significantly increased in CHF patients with NYHA functional class III compared to those with NYHA functional class I-II, accompanied by impaired mitochondrial respiratory capacity in PBMCs. ROS generation in PBMC mitochondria was positively correlated with urinary 8-hydroxydeoxyguanosine, a systemic oxidative stress marker, in CHF patients. Importantly, mitochondrial ROS generation in PBMCs was directly correlated with plasma levels of B-type natriuretic peptide, a biomarker for severity of HF, and inversely correlated with peak oxygen uptake, a parameter of exercise capacity, in CHF patients. The study showed that ROS generation in PBMC mitochondria was higher in patients with advanced CHF, and it was associated with disease severity and exercise intolerance in CHF patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Mariana Janini Gomes ◽  
Paula Felippe Martinez ◽  
Dijon Henrique Salomé Campos ◽  
Luana Urbano Pagan ◽  
Camila Bonomo ◽  
...  

Objective. We evaluated the influence of exercise on functional capacity, cardiac remodeling, and skeletal muscle oxidative stress, MAPK, and NF-κB pathway in rats with aortic stenosis- (AS-) induced heart failure (HF).Methods and Results. Eighteen weeks after AS induction, rats were assigned into sedentary control (C-Sed), exercised control (C-Ex), sedentary AS (AS-Sed), and exercised AS (AS-Ex) groups. Exercise was performed on treadmill for eight weeks. Statistical analyses were performed with Goodman and ANOVA or Mann-Whitney. HF features frequency and mortality did not differ between AS groups. Exercise improved functional capacity, assessed by maximal exercise test on treadmill, without changing echocardiographic parameters. Soleus cross-sectional areas did not differ between groups. Lipid hydroperoxide concentration was higher in AS-Sed than C-Sed and AS-Ex. Activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase was changed in AS-Sed and restored in AS-Ex. NADPH oxidase activity and gene expression of its subunits did not differ between AS groups. Total ROS generation was lower in AS-Ex than C-Ex. Exercise modulated MAPK in AS-Ex and did not change NF-κB pathway proteins.Conclusion. Exercise improves functional capacity in rats with AS-induced HF regardless of echocardiographic parameter changes. In soleus, exercise reduces oxidative stress, preserves antioxidant enzyme activity, and modulates MAPK expression.


2015 ◽  
Vol 119 (6) ◽  
pp. 734-738 ◽  
Author(s):  
Satyam Sarma ◽  
Benjamin D. Levine

Patients with heart failure with preserved ejection fraction (HFpEF) have similar degrees of exercise intolerance and dyspnea as patients with heart failure with reduced EF (HFrEF). The underlying pathophysiology leading to impaired exertional ability in the HFpEF syndrome is not completely understood, and a growing body of evidence suggests “peripheral,” i.e., noncardiac, factors may play an important role. Changes in skeletal muscle function (decreased muscle mass, capillary density, mitochondrial volume, and phosphorylative capacity) are common findings in HFrEF. While cardiac failure and decreased cardiac reserve account for a large proportion of the decline in oxygen consumption in HFrEF, impaired oxygen diffusion and decreased skeletal muscle oxidative capacity can also hinder aerobic performance, functional capacity and oxygen consumption (V̇o2) kinetics. The impact of skeletal muscle dysfunction and abnormal oxidative capacity may be even more pronounced in HFpEF, a disease predominantly affecting the elderly and women, two demographic groups with a high prevalence of sarcopenia. In this review, we 1) describe the basic concepts of skeletal muscle oxygen kinetics and 2) evaluate evidence suggesting limitations in aerobic performance and functional capacity in HFpEF subjects may, in part, be due to alterations in skeletal muscle oxygen delivery and utilization. Improving oxygen kinetics with specific training regimens may improve exercise efficiency and reduce the tremendous burden imposed by skeletal muscle upon the cardiovascular system.


Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 191-196 ◽  
Author(s):  
Renée Ventura-Clapier ◽  
Elvira De Sousa ◽  
Vladimir Veksler

Heart failure is a syndrome that also affects the periphery. Exercise intolerance and early fatigue seem to be linked in part to intrinsic alterations of skeletal muscle with decreases in both the production of ATP by mitochondria and the transfer of energy through the phosphotransfer kinases.


Author(s):  
Edward C. T. Waters ◽  
Friedrich Baark ◽  
Zilin Yu ◽  
Filipa Mota ◽  
Thomas R. Eykyn ◽  
...  

Abstract Purpose To determine the sensitivity of the 18F-radiolabelled dihydroethidine analogue ([18F]DHE) to ROS in a validated ex vivo model of tissue oxidative stress. Procedures The sensitivity of [18F]DHE to various ROS-generating systems was first established in vitro. Then, isolated rat hearts were perfused under constant flow, with contractile function monitored by intraventricular balloon. Cardiac uptake of infused [18F]DHE (50–150 kBq.min−1) was monitored by γ-detection, while ROS generation was invoked by menadione infusion (0, 10, or 50 μm), validated by parallel measures of cardiac oxidative stress. Results [18F]DHE was most sensitive to oxidation by superoxide and hydroxyl radicals. Normalised [18F]DHE uptake was significantly greater in menadione-treated hearts (1.44 ± 0.27) versus control (0.81 ± 0.07) (p < 0.05, n = 4/group), associated with concomitant cardiac contractile dysfunction, glutathione depletion, and PKG1α dimerisation. Conclusion [18F]DHE reports on ROS in a validated model of oxidative stress where perfusion (and tracer delivery) is unlikely to impact its pharmacokinetics.


Sign in / Sign up

Export Citation Format

Share Document