scholarly journals Detecting Validated Intracellular ROS Generation with 18F-dihydroethidine-Based PET

Author(s):  
Edward C. T. Waters ◽  
Friedrich Baark ◽  
Zilin Yu ◽  
Filipa Mota ◽  
Thomas R. Eykyn ◽  
...  

Abstract Purpose To determine the sensitivity of the 18F-radiolabelled dihydroethidine analogue ([18F]DHE) to ROS in a validated ex vivo model of tissue oxidative stress. Procedures The sensitivity of [18F]DHE to various ROS-generating systems was first established in vitro. Then, isolated rat hearts were perfused under constant flow, with contractile function monitored by intraventricular balloon. Cardiac uptake of infused [18F]DHE (50–150 kBq.min−1) was monitored by γ-detection, while ROS generation was invoked by menadione infusion (0, 10, or 50 μm), validated by parallel measures of cardiac oxidative stress. Results [18F]DHE was most sensitive to oxidation by superoxide and hydroxyl radicals. Normalised [18F]DHE uptake was significantly greater in menadione-treated hearts (1.44 ± 0.27) versus control (0.81 ± 0.07) (p < 0.05, n = 4/group), associated with concomitant cardiac contractile dysfunction, glutathione depletion, and PKG1α dimerisation. Conclusion [18F]DHE reports on ROS in a validated model of oxidative stress where perfusion (and tracer delivery) is unlikely to impact its pharmacokinetics.

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Sheng-Huang Chang ◽  
Chung-Jung Liu ◽  
Chia-Hua Kuo ◽  
Hong Chen ◽  
Wen-Yuan Lin ◽  
...  

Garlic oil has been reported to protect the cardiovascular system; however, the effects and mechanisms behind the cardioprotection of garlic oil on diabetes-induced cardiaomyopathy are unclear. In this study, we used streptozotocin (STZ)-induced diabetic rats to investigate whether garlic oil could protect the heart from diabetes-induced cardiomyopathy. Wistar STZ-induced diabetic rats received garlic oil (0, 10, 50 or 100 mg kg−1body weight) by gastric gavage every 2 days for 16 days. Normal rats without diabetes were used as control. Cardiac contractile dysfunction and cardiac pathologic hypertrophy responses were observed in diabetic rat hearts. Cardiac function was examined using echocardiography. In addition to cardiac hypertrophy-related mitogen-activated protein kinases (MAPK) pathways (e.g., p38, c-Jun N-terminal kinases (JNK) and extracellularly responsive kinase (ERK1/2)), the IL-6/MEK5/ERK5 signaling pathway was greatly activated in the diabetic rat hearts, which contributes to the up-regulation of cardiac pathologic hypertrophy markers including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), and leads to cardiac contractile dysfunction. Garlic oil treatment significantly inhibited the up-regulation in MAPK (e.g., p38, JNK and ERK1/2) and IL-6/MEK5/ERK5 signaling pathways in the diabetic rat hearts, reducing the levels of cardiac pathologic hypertrophy markers such as ANP and BNP, and improving the cardiac contractile function. Collectively, data from these studies demonstrate that garlic oil shows the potential cardioprotective effects for protecting heart from diabetic cardiomyopathy.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Kristina Ramanauskienė ◽  
Ada Stelmakiene ◽  
Daiva Majienė

Theaimof the study was to design gels with lemon balm extract, assess their quality, and investigate the effect of rosmarinic acid on skin cells in normal conditions and under oxidative stress.Methods. The quantities of rosmarinic acid (RA) released from gels were evaluated by applying the HPLC technique. HaCaT cell viability was assessed by using the MTT method. ROS generation was measured using DCFH-DA dye. Theresultsshowed that the gelling material affected the release of RA content from gels. Lower and slower RA content release was determined in carbomer-based gels. After 6 hours of biopharmaceutical researchin vitro, at least 4% of RA was released from the gel. The results of the biological studies on HaCaT cells demonstrated that, in the oxidative stress conditions, RA reduced intracellular ROS amounts to 28%; 0.25–0.5 mg/mL of RA increased cell viability by 10–24% and protected cells from the damage caused by H2O2.Conclusions. According to research results, it is appropriate to use a carbomer as the main gelling material, and its concentration should not exceed 1.0%. RA, depending on the concentration, reduces the amount of intracellular ROS and enhances cell viability in human keratinocytes in oxidative stress conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shan Wang ◽  
Shan-dong Ye ◽  
Wen-jia Sun ◽  
Yuan-yuan Hu

Aim. The purpose of this study was to investigate the effects of pioglitazone on oxidative stress and the expressions of p22phox and p47phox, subunits of NADPH oxidase, in mesangial cells (MCs). Method. Rat mesangial cells were cultured and randomly divided into normal glucose (NG) group, high glucose (HG) group, and pioglitazone group. After 48 h exposure, the supernatants and cells were collected. The expressions of p22phox and p47phox in MCs were detected by RT-PCR and western blot. The levels of intracellular ROS were determined by flow cytometry. Coloimetry method was used to detect malondialdehyde (MDA) concentrations and superoxide dismutase (SOD) activities. Results. Compared with the NG group, the expression levels of p22phox, p47phox and ROS significantly increased, the activity of SOD decreased in HG group, while the concentration of MDA greatly increased (P<0.01). Pioglitazone significantly suppressed HG-induced p22phox and p47phox expressions and oxidative stress. The protein and gene expressions of p22phox and p47phox were markedly reduced after pioglitazone treatment, so did the ROS generation. The activities of SOD in MCs increased, while the concentrations of MDA in the supernatant decreased greatly by pioglitazone. Conclusions. Pioglitazone can inhibit HG-induced oxidative stress in MCs through suppressing p22phox and p47phox expressions.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 112
Author(s):  
Sera Kim ◽  
Mingyeong Kim ◽  
Min-Cheol Kang ◽  
Hyun Hee L. Lee ◽  
Chi Heung Cho ◽  
...  

Oxidative stress, caused by the excessive production of reactive oxygen species (ROS), results in cellular damage. Therefore, functional materials with antioxidant properties are necessary to maintain redox balance. Turmeric leaves (Curcuma longa L. leaves; TL) are known to have antioxidant properties, including 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-Azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and Hydrogen peroxide (H2O2) radical scavenging activity in several studies. The antioxidant effects of TL come from distinct bioactive compounds, such as curcumin, total phenolic compounds, and flavonoids. Therefore, in this study, the antioxidant effects of a water extract of TL (TLE) against H2O2 treatment were assessed in vitro Vero cells and in vivo zebrafish models. The intracellular ROS generation and the proportion of sub-G1 phase cells were evaluated in H2O2- or/and TLE-treated Vero cells to measure the antioxidant activity of TLE. TLE showed outstanding intracellular ROS scavenging activity and significantly decreased the proportion of cells in the sub-G1 phase in a dose-dependent manner. Furthermore, cell death, ROS generation, and lipid peroxidation in the H2O2-treated zebrafish model were attenuated as a consequence of TLE treatment. Collectively, the results from this study suggested that TLE may be an alternative material to relieve ROS generation through its antioxidant properties or a suitable material for the application in a functional food industry.


Author(s):  
Andrej Roczkowsky ◽  
Brandon Y H Chan ◽  
Tim Y T Lee ◽  
Zabed Mahmud ◽  
Bridgette Hartley ◽  
...  

Abstract Aims Matrix metalloproteinase-2 (MMP-2) is a zinc-dependent protease which contributes to cardiac contractile dysfunction when activated during myocardial ischaemia–reperfusion (IR) injury. MMP-2 is localized to several subcellular sites inside cardiac myocytes; however, its role in the sarcoplasmic reticulum (SR) is unknown. The Ca2+ ATPase SERCA2a, which pumps cytosolic Ca2+ into the SR to facilitate muscle relaxation, is degraded in cardiac IR injury; however, the protease responsible for this is unclear. We hypothesized that MMP-2 contributes to cardiac contractile dysfunction by proteolyzing SERCA2a, thereby impairing its activity in IR injury. Methods and results Isolated rat hearts were subjected to IR injury in the presence or absence of the selective MMP inhibitor ARP-100, or perfused aerobically as a control. Inhibition of MMP activity with ARP-100 significantly improved the recovery of cardiac mechanical function and prevented the increase of a 70 kDa SERCA2a degradation fragment following IR injury, although 110 kDa SERCA2a and phospholamban levels appeared unchanged. Electrophoresis of IR heart samples followed by LC-MS/MS confirmed the presence of a SERCA2a fragment of ∼70 kDa. MMP-2 activity co-purified with SR-enriched microsomes prepared from the isolated rat hearts. Endogenous SERCA2a in SR-enriched microsomes was proteolyzed to ∼70 kDa products when incubated in vitro with exogenous MMP-2. MMP-2 also cleaved purified porcine SERCA2a in vitro. SERCA activity in SR-enriched microsomes was decreased by IR injury; however, this was not prevented with ARP-100. Conclusion This study shows that MMP-2 activity is found in SR-enriched microsomes from heart muscle and that SERCA2a is proteolyzed by MMP-2. The cardioprotective actions of MMP inhibition in myocardial IR injury may include the prevention of SERCA2a degradation.


Author(s):  
Fuli Ya ◽  
Kongyao Li ◽  
Hong Chen ◽  
Zezhong Tian ◽  
Die Fan ◽  
...  

AbstractOxidative stress plays crucial roles in initiating platelet apoptosis that facilitates the progression of cardiovascular diseases (CVDs). Protocatechuic acid (PCA), a major metabolite of anthocyanin cyanidin-3-O-β-glucoside (Cy-3-g), exerts cardioprotective effects. However, underlying mechanisms responsible for such effects remain unclear. Here, we investigate the effect of PCA on platelet apoptosis and the underlying mechanisms in vitro. Isolated human platelets were treated with hydrogen peroxide (H2O2) to induce apoptosis with or without pretreatment with PCA. We found that PCA dose-dependently inhibited H2O2-induced platelet apoptosis by decreasing the dissipation of mitochondrial membrane potential, activation of caspase-9 and caspase-3, and decreasing phosphatidylserine exposure. Additionally, the distributions of Bax, Bcl-xL, and cytochrome c mediated by H2O2 in the mitochondria and the cytosol were also modulated by PCA treatment. Moreover, the inhibitory effects of PCA on platelet caspase-3 cleavage and phosphatidylserine exposure were mainly mediated by downregulating PI3K/Akt/GSK3β signaling. Furthermore, PCA dose-dependently decreased reactive oxygen species (ROS) generation and the intracellular Ca2+ concentration in platelets in response to H2O2. N-Acetyl cysteine (NAC), a ROS scavenger, markedly abolished H2O2-stimulated PI3K/Akt/GSK3β signaling, caspase-3 activation, and phosphatidylserine exposure. The combination of NAC and PCA did not show significant additive inhibitory effects on PI3K/Akt/GSK3β signaling and platelet apoptosis. Thus, our results suggest that PCA protects platelets from oxidative stress-induced apoptosis through downregulating ROS-mediated PI3K/Akt/GSK3β signaling, which may be responsible for cardioprotective roles of PCA in CVDs.


2017 ◽  
Vol 44 (4) ◽  
pp. 288-293 ◽  
Author(s):  
Shiho Yamadera ◽  
Yuya Nakamura ◽  
Masahiro Inagaki ◽  
Isao Ohsawa ◽  
Hiromichi Gotoh ◽  
...  

Aim: To examine the effects of vitamin E-coated dialyzer on oxidative stress in vitro. Methods: A dialyzer with a synthetic polymer membrane (APS-11SA) and vitamin E-coated dialyzer (VPS-11SA) were connected to a blood tubing line, and U937 cells were circulated in the device. The circulating fluid was collected at 1, 2, 5, 10, 25, and 50 cycles, which are estimated numbers of passes through the dialyzer. Intracellular reactive oxygen species (ROS) production, malondialdehyde (MDA), and Cu/Zn-superoxide dismutase (SOD) were quantified. Results: Intracellular ROS production was increased in the first cycle by APS-11SA and was decreased throughout the experiment by VPS-11SA. Intracellular ROS production in the VPS-11SA device was lower, and MDA levels were decreased. MDA levels were lower during VPS-11SA processing than during APS-11SA processing. Cu/Zn-SOD levels remained unchanged. Conclusion: Our results highlight anti-oxidative-stress effects of a vitamin E-coated dialyzer.


2021 ◽  

Myocardial infarction is a serious representation of cardiovescular disease, MicroRNAs play a role in modifying I/R injury and myocardial infarct remodeling. The present study therefore examined the potential role of miR-187 in cardiac I/R injury and its underlying mechanisms. miR-187 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with miR-187 mimic or inhibitor to confirm the function of miR-187 in H/R. DYRK2 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with DYRK2 inhibitor. A myocardium I/R mouse model was established. Circulating levels of miR-187 or DYRK2 was detected by quantitative realtime PCR and protein expression was detected by western blotting. The cell viability in all groups was determined by MTT assay and the apoptosis ratio was detected by flow cytometry after staining with Annexin V-FITC. The effect of miR-187 on cellular ROS generation was examined by DCFH-DA. The level of lipid peroxidation and SOD expression were determined by MDA and SOD assay. The findings indicated that miR-187 may be a possible regulator in the protective effect of H/R-induced cardiomyocyte apoptosis, cellular oxidative stress and leaded to DYRK2 suppression at a posttranscriptional level. Moreover, the improvement of miR-187 on H/R-induced cardiomyocyte injury contributed to the obstruction of DYRK2 expression. In addition, these results identified DYRK2 as the functional downstream target of miR-187 regulated myocardial infarction and oxidative stress.These present work provided the first insight into the function of miR-187 in successfully protect cardiomyocyte both in vivo and in vitro, and such a protective effect were mediated through the regulation of DYRK2 expression.


Sign in / Sign up

Export Citation Format

Share Document