Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI

2003 ◽  
Vol 285 (3) ◽  
pp. H946-H954 ◽  
Author(s):  
Junjie Chen ◽  
Sheng-Kwei Song ◽  
Wei Liu ◽  
Mark McLean ◽  
J. Stacy Allen ◽  
...  

Structural remodeling of myocardium after infarction plays a critical role in functional adaptation. Diffusion tensor magnetic resonance imaging (DTMRI) provides a means for rapid and nondestructive characterization of the three-dimensional fiber architecture of cardiac tissues. In this study, microscopic structural changes caused by MI were evaluated in Fischer 344 rats 4 wk after infarct surgery. DTMRI studies were performed on 15 excised, formalin-fixed rat hearts of both infarct (left anterior descending coronary artery occlusion, n = 8) and control (sham, n = 7) rats. Infarct myocardium exhibited increased water diffusivity (41% increase in trace values) and decreased diffusion anisotropy (37% decrease in relative anisotropy index). The reduced diffusion anisotropy correlated negatively with microscopic fiber disarray determined by histological analysis ( R = 0.81). Transmural courses of fiber orientation angles in infarct zones were similar to those of normal myocardium. However, regional angular deviation of the diffusion tensor increased significantly in the infarct myocardium and correlated strongly with microscopic fiber disarray ( R = 0.86). These results suggest that DTMRI may provide a valuable tool for defining structural remodeling in diseased myocardium at the cellular and tissue level.

Author(s):  
M.J. Witcomb ◽  
M.A. O'Keefe ◽  
CJ. Echer ◽  
C. Nelson ◽  
J.H. Turner ◽  
...  

Under normal circumstances, Pt dissolves only a very small amount of interstitial carbon in solid solution. Even so, an appropriate quench/age treatment leads to the formation of stable Pt2C {100} plate precipitates. Excess (quenched-in) vacancies play a critical role in the process by accommodating the volume and structural changes that accompany the transformation. This alloy system exhibits other interesting properties. Due to a large vacancy/carbon atom binding energy, Pt can absorb excess carbon at high temperatures in a carburizing atmosphere. In regions rich in carbon and vacancies, another carbide phase, Pt7C which undergoes an order-disorder reaction was formed. The present study of Pt carburized at 1160°C and aged at 515°C shows that other carbides in the PtxC series can be produced.


2019 ◽  
Author(s):  
Justin C. Hayes ◽  
Katherine L Alfred ◽  
Rachel Pizzie ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

Modality specific encoding habits account for a significant portion of individual differences reflected in functional activation during cognitive processing. Yet, little is known about how these habits of thought influence long-term structural changes in the brain. Traditionally, habits of thought have been assessed using self-report questionnaires such as the visualizer-verbalizer questionnaire. Here, rather than relying on subjective reports, we measured habits of thought using a novel behavioral task assessing attentional biases toward picture and word stimuli. Hypothesizing that verbal habits of thought are reflected in the structural integrity of white matter tracts and cortical regions of interest, we used diffusion tensor imaging and volumetric analyses to assess this prediction. Using a whole-brain approach, we show that word bias is associated with increased volume in several bilateral language regions, in both white and grey matter parcels. Additionally, connectivity within white matter tracts within an a priori speech production network increased as a function of word bias. These results demonstrate long-term structural and morphological differences associated with verbal habits of thought.


2012 ◽  
Vol 67 (6) ◽  
pp. 370-376 ◽  
Author(s):  
Cristina Granziera ◽  
Hakan Ay ◽  
Susan P. Koniak ◽  
Gunnar Krueger ◽  
A. Gregory Sorensen

2021 ◽  
Vol 22 (15) ◽  
pp. 8298
Author(s):  
Hugo Christian Monroy-Ramirez ◽  
Marina Galicia-Moreno ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Arturo Santos ◽  
...  

Carbohydrates and lipids are two components of the diet that provide the necessary energy to carry out various physiological processes to help maintain homeostasis in the body. However, when the metabolism of both biomolecules is altered, development of various liver diseases takes place; such as metabolic-associated fatty liver diseases (MAFLD), hepatitis B and C virus infections, alcoholic liver disease (ALD), and in more severe cases, hepatocelular carcinoma (HCC). On the other hand, PPARs are a family of ligand-dependent transcription factors with an important role in the regulation of metabolic processes to hepatic level as well as in other organs. After interaction with specific ligands, PPARs are translocated to the nucleus, undergoing structural changes to regulate gene transcription involved in lipid metabolism, adipogenesis, inflammation and metabolic homeostasis. This review aims to provide updated data about PPARs’ critical role in liver metabolic regulation, and their involvement triggering the genesis of several liver diseases. Information is provided about their molecular characteristics, cell signal pathways, and the main pharmacological therapies that modulate their function, currently engaged in the clinic scenario, or in pharmacological development.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 5041-5052 ◽  
Author(s):  
Sophea Heng ◽  
Ana Cervero ◽  
Carlos Simon ◽  
Andrew N. Stephens ◽  
Ying Li ◽  
...  

Establishment of endometrial receptivity is vital for successful embryo implantation; its failure causes infertility. Epithelial receptivity acquisition involves dramatic structural changes in the plasma membrane and cytoskeleton. Proprotein convertase 5/6 (PC6), a serine protease of the proprotein convertase (PC) family, is up-regulated in the human endometrium specifically at the time of epithelial receptivity and stromal cell decidualization. PC6 is the only PC member tightly regulated in this manner. The current study addressed the importance and mechanisms of PC6 action in regulating receptivity in women. PC6 was dysregulated in the endometrial epithelium during the window of implantation in infertile women of three demographically different cohorts. Its critical role in receptivity was evidenced by a significant reduction in mouse blastocyst attachment of endometrial epithelial cells after PC6 knockdown by small interfering RNA. Using a proteomic approach, we discovered that PC6 cleaved the key scaffolding protein, ezrin-radixin-moesin binding phosphoprotein 50 (EBP50), thereby profoundly affecting its interaction with binding protein ezrin (a key protein bridging actin filaments and plasma membrane), EBP50/ezrin cellular localization, and cytoskeleton-membrane connections. We further validated this novel PC6 regulation of receptivity in human endometrium in vivo in fertile vs. infertile patients. These results strongly indicate that PC6 plays a key role in regulating fundamental cellular remodeling processes, such as plasma membrane transformation and membrane-cytoskeletal interface reorganization. PC6 cleavage of a crucial scaffolding protein EBP50, thereby profoundly regulating membrane-cytoskeletal reorganization, greatly extends the current knowledge of PC biology and provides substantial new mechanistic insight into the fields of reproduction, basic cellular biology, and PC biochemistry.


Author(s):  
Benjamin C. Gadomski ◽  
John Rasmussen ◽  
Christian M. Puttlitz

The human spine experiences complex loading in vivo; however, simplifications to these loading conditions are commonly made in computational and experimental protocols. Pure moments are often used in cadaveric preparations to replicate in vivo loading conditions, and previous studies have shown this method adequately predicts range of motion behavior (1, 2). It is unclear what effect pure moment loading has on the tissue-level internal mechanical parameters such as stresses in the annulus fibrosus and facet contact parameters. Recent advances in musculoskeletal modeling have elucidated previously unknown quantities of the musculature recruitment patterns such as times, forces, and directions. The advancements are especially relevant in cases of surgical intervention because the spinal musculature has been reported to play a critical role in providing additional stability to the spine when defects such as discectomy and nucleotomy are involved (2). Thus, the aim of the study was to determine the importance of computational loading conditions on the resultant global ranges of motion, as well as the tissue-level predictions of annulus fibrosus stresses, and facet contact pressures, forces, and areas.


1995 ◽  
Vol 10 (6) ◽  
pp. 270-282
Author(s):  
Stella Kourembanas

Persistent pulmonary hypertension of the newborn (PPHN) is a common cause of respiratory failure in the full-term neonate. Molecular and cellular studies in vascular biology have revealed that endothelial-derived mediators play a critical role in the pathogenesis and treatment of PPHN. Endothelial-derived vasoconstrictors, like endothelin, may increase smooth muscle cell contractility and growth, leading to the physiologic and structural changes observed in the pulmonary arterioles of infants with this disease. On the other hand, decreased production of the endothelial-derived relaxing factor, nitric oxide, may exacerbate pulmonary vasoreactivity and lead to more severe pulmonary hypertension. Exogenous (inhaled) nitric oxide therapy reduces pulmonary vascular resistance and improves oxygenation. The safety and efficacy of this therapy in reducing the need for extracorporeal membrane oxygenation and decreasing long-term morbidity is being tested in several trials nationally and abroad. Understanding the basic mechanisms that regulate the gene expression and production of these vasoactive mediators will lead to improved preventive and therapeutic strategies for PPHN.


2021 ◽  
Vol 11 ◽  
Author(s):  
Taoyang Yuan ◽  
Jianyou Ying ◽  
Chuzhong Li ◽  
Lu Jin ◽  
Jie Kang ◽  
...  

BackgroundThe growth hormone (GH) and insulin-like-growth factor 1 (IGF-1) axis has long been recognized for its critical role in brain growth, development. This study was designed to investigate microstructural pathology in the cortex and white matter in growth hormone-secreting pituitary adenoma, which characterized by excessive secretion of GH and IGF-1.Methods29 patients with growth hormone-secreting pituitary adenoma (acromegaly) and 31 patients with non-functional pituitary adenoma as controls were recruited and assessed using neuropsychological test, surface-based morphometry, T1/T2-weighted myelin-sensitive magnetic resonance imaging, neurite orientation dispersion and density imaging, and diffusion tensor imaging.ResultsCompared to controls, we found 1) acromegaly had significantly increased cortical thickness throughout the bilateral cortex (pFDR < 0.05). 2) T1/T2-weighted ratio in the cortex were decreased in the bilateral occipital cortex and pre/postcentral central gyri but increased in the bilateral fusiform, insular, and superior temporal gyri in acromegaly (pFDR < 0.05). 3) T1/T2-weighted ratio were decreased in most bundles, and only a few areas showed increases in acromegaly (pFDR < 0.05). 4) Neurite density index (NDI) was significantly lower throughout the cortex and bundles in acromegaly (pTFCE < 0.05). 5) lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in extensive bundles in acromegaly (pTFCE < 0.05). 6) microstructural pathology in the cortex and white matter were associated with neuropsychological dysfunction in acromegaly.ConclusionsOur findings suggested that long-term persistent and excess serum GH/IGF-1 levels alter the microstructure in the cortex and white matter in acromegaly, which may be responsible for neuropsychological dysfunction.


Sign in / Sign up

Export Citation Format

Share Document