Tyrosine kinases regulate intracellular calcium during α2-adrenergic contraction in rat aorta

2002 ◽  
Vol 283 (4) ◽  
pp. H1673-H1680 ◽  
Author(s):  
Rebecca W. Carter ◽  
Nancy L. Kanagy

We have demonstrated enhanced contractile sensitivity to the α2-adrenoreceptor (α2-AR) agonist UK-14304 in arteries from rats made hypertensive with chronic nitric oxide synthase (NOS) inhibition (LHR) compared with arteries from normotensive rats (NR); additionally, this contraction requires Ca2+ entry. We hypothesized that tyrosine kinases augment α2-AR contraction in LHR arteries by increasing Ca2+. The tyrosine kinase inhibitor tyrphostin 23 significantly attenuated UK-14304 contraction of denuded thoracic aortic rings from NR and LHR. However, tyrphostin 23 did not alter UK-14304 contraction in ionomycin-permeabilized aorta, which indicates that tyrosine kinases regulate intracellular Ca2+concentration. The Src family inhibitor PP1 and the epidermal growth factor receptor kinase inhibitor AG-1478 did not alter α2-AR contraction, whereas the mitogen-activated protein kinase extracellular signal-regulated kinase kinase inhibitor PD-98059 attenuated the contraction. Contraction to CaCl2 in ionomycin-permeabilized LHR rings was greater than in NR rings. UK-14304 augmented CaCl2 contraction in ionomycin-permeabilized rings from both groups but to a greater extent in LHR aorta. Together, these data suggest that α2-AR stimulates contraction via two pathways. One, which is enhanced with NOS inhibition hypertension, activates Ca2+ sensitivity and is independent of tyrosine kinases. The other is tyrosine kinase dependent and regulates intracellular Ca2+ concentration.

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1759
Author(s):  
Liliana Montella ◽  
Margaret Ottaviano ◽  
Vittorio Riccio ◽  
Fernanda Picozzi ◽  
Gaetano Facchini ◽  
...  

Langerhans cell histiocytosis (LCH) is a rare disease that has a variable clinical presentation and unpredictable behavior. Until recently, therapeutic options were limited. Insights into the role of mitogen-activated protein kinase (MAPK) signaling have allowed the increased use of targeted treatments. Before the advent of drugs that interfere with this pathway, investigations concerning the tyrosine kinase inhibitor imatinib opened the way to a rationale-based therapeutic approach to the disease. Imatinib block the binding site of ATP in the BCR/ABL protein and is also a platelet-derived growth factor receptor (PDGFR) and a KIT (CD117) kinase inhibitor. A case of refractory LCH with brain involvement was reported to be successfully treated with imatinib. Thereafter, we further explored the role of this tyrosine kinase inhibitor. The present study is composed of an immunohistochemical evaluation of PDGFRβ expression and a clinical evaluation of imatinib in a series of LCH patients. In the first part, a series of 10 samples obtained from LCH patients was examined and a strong immunohistochemistry expression of PDGFRβ was found in 40% of the cases. In the clinical part of the study, five patients were enrolled. Long-lasting disease control was obtained. These results may suggest a potential role for this drug in the current age.


1999 ◽  
Vol 344 (3) ◽  
pp. 889-894 ◽  
Author(s):  
Hongying ZHONG ◽  
Kenneth P. MINNEMAN

We compared the role of tyrosine kinases in α1A-adrenergic receptor (AR) and growth factor receptor stimulation of mitogen-activated protein kinase pathways in PC12 cells. Norepinephrine (NE) (noradrenaline), epidermal growth factor (EGF) and nerve growth factor (NGF) caused different patterns of tyrosine phosphorylation in PC12 cells stably expressing α1A-ARs. NE increased tyrosine phosphorylation of focal adhesion-related kinase Pyk2 and a 70 kDa protein, probably paxillin, whereas EGF strongly stimulated tyrosine phosphorylation of the EGF receptor and cytokine-activated kinase Jak2. The EGF receptor inhibitor AG1478 inhibited activation of extracellular signal-regulated kinases (ERKs) by EGF but not by NE. EGF and NGF strongly activated tyrosine phosphorylation of Shc and caused association of Src-homology collagen (Shc) with growth-factor-receptor-bound protein 2 (Grb2); however, neither NE nor UTP caused substantial activation of the Shc/Grb2 pathway. NE, UTP, EGF and NGF all increased tyrosine phosphorylation of Src, and this was inhibited by the Src inhibitor PP2. However, PP2 inhibited ERK activation in response to NE and UTP, but not in response to EGF or NGF. PP2 also completely blocked NE-induced PC12 cell differentiation, but had no measurable effect on NGF-induced differentiation. These studies show that activation of mitogen-activated protein kinase pathways by G-protein-coupled receptors and tyrosine kinase receptors proceed through distinct molecular pathways in PC12 cells, and support an obligatory role for Src activation in mitogenic responses to α1A-ARs in these cells.


2015 ◽  
Vol 33 (6) ◽  
pp. 771-779 ◽  
Author(s):  
Naoshi Nishida ◽  
Masayuki Kitano ◽  
Toshiharu Sakurai ◽  
Masatoshi Kudo

Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide, and prognosis remains unsatisfactory when the disease is diagnosed at an advanced stage. Many molecular targeted agents are being developed for the treatment of advanced HCC; however, the only promising drug to have been developed is sorafenib, which acts as a multi-kinase inhibitor. Unfortunately, a subgroup of HCC is resistant to sorafenib, and the majority of these HCC patients show disease progression even after an initial satisfactory response. To date, a number of studies have examined the underlying mechanisms involved in the response to sorafenib, and trials have been performed to overcome the acquisition of drug resistance. The anti-tumor activity of sorafenib is largely attributed to the blockade of the signals from growth factors, such as vascular endothelial growth factor receptor and platelet-derived growth factor receptor, and the downstream RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade. The activation of an escape pathway from RAF/MEK/ERK possibly results in chemoresistance. In addition, there are several features of HCCs indicating sorafenib resistance, such as epithelial-mesenchymal transition and positive stem cell markers. Here, we review the recent reports and focus on the mechanism and prediction of chemoresistance to sorafenib in HCC.


Blood ◽  
2005 ◽  
Vol 106 (10) ◽  
pp. 3423-3431 ◽  
Author(s):  
Ahmad Salameh ◽  
Federico Galvagni ◽  
Monia Bardelli ◽  
Federico Bussolino ◽  
Salvatore Oliviero

AbstractVascular endothelial growth factor receptor-3 (VEGFR-3) plays a key role for the remodeling of the primary capillary plexus in the embryo and contributes to angiogenesis and lymphangiogenesis in the adult. However, VEGFR-3 signal transduction pathways remain to be elucidated. Here we investigated VEGFR-3 signaling in primary human umbilical vein endothelial cells (HUVECs) by the systematic mutation of the tyrosine residues potentially involved in VEGFR-3 signaling and identified the tyrosines critical for its function. Y1068 was shown to be essential for the kinase activity of the receptor. Y1063 signals the receptor-mediated survival by recruiting CRKI/II to the activated receptor, inducing a signaling cascade that, via mitogen-activated protein kinase kinase-4 (MKK4), activates c-Jun N-terminal kinase-1/2 (JNK1/2). Inhibition of JNK1/2 function either by specific peptide inhibitor JNKI1 or by RNA interference (RNAi) demonstrated that activation of JNK1/2 is required for a VEGFR-3–dependent prosurvival signaling. Y1230/Y1231 contributes, together with Y1337, to proliferation, migration, and survival of endothelial cells. Phospho-Y1230/Y1231 directly recruits growth factor receptor–bonus protein (GRB2) to the receptor, inducing the activation of both AKT and extracellular signal–related kinase 1/2 (ERK1/2) signaling. Finally, we observed that Y1063 and Y1230/Y1231 signaling converge to induce c-JUN expression, and RNAi experiments demonstrated that c-JUN is required for growth factor–induced prosurvival signaling in primary endothelial cells.


2020 ◽  
Vol 21 (8) ◽  
pp. 2919
Author(s):  
Chia-Liang Lin ◽  
Tung-Wei Hung ◽  
Tsung-Ho Ying ◽  
Chi-Jui Lin ◽  
Yi-Hsien Hsieh ◽  
...  

Renal cell carcinoma (RCC) is the most common adult kidney cancer, and accounts for 85% of all cases of kidney cancers worldwide. Praeruptorin B (Pra-B) is a bioactive constituent of Peucedanum praeruptorum Dunn and exhibits several pharmacological activities, including potent antitumor effects. However, the anti-RCC effects of Pra-B and their underlying mechanisms are unclear; therefore, we explored the effects of Pra-B on RCC cells in this study. We found that Pra-B nonsignificantly influenced the cell viability of human RCC cell lines 786-O and ACHN at a dose of less than 30 μM for 24 h treatment. Further study revealed that Pra-B potently inhibited the migration and invasion of 786-O and ACHN cells, as well as downregulated the mRNA and protein expression of cathepsin C (CTSC) and cathepsin V (CTSV) of 786-O and ACHN cells. Mechanistically, Pra-B also reduced the protein levels of phospho (p)-epidermal growth factor receptor (EGFR), p-mitogen-activated protein kinase kinase (MEK), and p-extracellular signal-regulated kinases (ERK) in RCC cells. In addition, Pra-B treatment inhibited the effect of EGF on the upregulation of EGFR–MEK–ERK, CTSC and CTSV expression, cellular migration, and invasion of 786-O cells. Our findings are the first to demonstrate that Pra-B can reduce the migration and invasion ability of human RCC cells through suppressing the EGFR-MEK-ERK signaling pathway and subsequently downregulating CTSC and CTSV. This evidence suggests that Pra-B can be developed as an effective antimetastatic agent for the treatment of RCC.


1997 ◽  
Vol 186 (12) ◽  
pp. 1947-1955 ◽  
Author(s):  
Marion Dorsch ◽  
Pang-Dian Fan ◽  
Nika N. Danial ◽  
Paul B. Rothman ◽  
Stephen P. Goff

Cytokine receptors of the hematopoietic receptor superfamily lack intrinsic tyrosine kinase domains for the intracellular transmission of their signals. Instead all members of this family associate with Jak family nonreceptor tyrosine kinases. Upon ligand stimulation of the receptors, Jaks are activated to phosphorylate target substrates. These include STAT (signal transducers and activators of transcription) proteins, which after phosphorylation translocate to the nucleus and modulate gene expression. The exact role of the Jak-STAT pathway in conveying growth and differentiation signals remains unclear. Here we describe a deletion mutant of the thrombopoietin receptor (c-mpl) that has completely lost the capacity to activate Jaks and STATs but retains its ability to induce proliferation. This mutant still mediates TPO-induced phosphorylation of Shc, Vav, mitogen-activated protein kinase (MAPK) and Raf-1 as well as induction of c-fos and c-myc, although at somewhat reduced levels. Furthermore, we show that both wild-type and mutant receptors activate phosphatidylinositol (PI) 3-kinase upon thrombopoietin stimulation and that thrombopoietin-induced proliferation is inhibited in the presence of the PI 3-kinase inhibitor wortmannin. These results demonstrate that the Jak-STAT pathway is dispensable for the generation of mitogenic signals by a cytokine receptor.


Sign in / Sign up

Export Citation Format

Share Document