scholarly journals IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice

2009 ◽  
Vol 297 (1) ◽  
pp. H76-H85 ◽  
Author(s):  
Qianli Yu ◽  
Randy Vazquez ◽  
Elham Vali Khojeini ◽  
Chirag Patel ◽  
Raj Venkataramani ◽  
...  

Osteopontin (OPN), a key component of the extracellular matrix, is associated with the fibrotic process during tissue remodeling. OPN and the cytokine interleukin (IL)-18 have been shown to be overexpressed in an array of human cardiac pathologies. In the present study, we determined the role of IL-18 in the regulation of cardiac OPN expression and the subsequent interstitial fibrosis and diastolic dysfunction. We demonstrated parallel increases in IL-18, OPN expression, and interstitial fibrosis in murine models of left ventricular pressure and volume overload. Exogenous recombinant (r)IL-18 administered for 2 wk increased cardiac OPN expression, interstitial fibrosis, and diastolic dysfunction. Stimulation of the T helper (Th)1 lymphocyte phenotype with a selective toll-like receptor (TLR)9 agonist induced cardiac IL-18 and OPN expression, which was associated with increased cardiac fibrillar collagen concentrations and interstitial fibrosis resulting in diastolic dysfunction. rIL-18 induced OPN expression and protein levels in primary of cardiac fibroblast cultures. Conditioned media from TLR9-stimulated T lymphocyte cultures induced IL-18 and OPN expression in cardiac fibroblasts, while blockade of the IL-18 receptor with a neutralizing antibody abolished the increase in OPN expression. Furthermore, a mutation in the transcriptional factor interferon regulatory factor (IRF)1 or IRF1 small interfering RNA (siRNA) resulted in the decreased expression of IL-18 and OPN in cardiac fibroblasts. With pressure overload, IRF1-mutant mice showed downregulation of IL-18 and OPN expression in cardiac tissue, reduced cardiac fibrotic development, and increased left ventricular function compared with wild type. These results provide direct evidence that the induction of IL-18 regulates OPN-mediated cardiac fibrosis and diastolic dysfunction.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Lily Neff ◽  
An Van Laer ◽  
Catalin F Baicu ◽  
Michael R Zile ◽  
Amy Bradshaw

Background: Antecedent conditions, like aortic stenosis, can induce left ventricular pressure overload (LVPO), that can lead to Heart Failure with Preserved Ejection Fraction (HFpEF). Myocardial fibrosis and stiffness are key characteristics of HFpEF. Cardiac fibroblasts are the primary cell type regulating ECM production and deposition. In previous studies, biopsies isolated at the time of SAVR surgery, to correct stenosis, and then at 1-year and 5-years post-SAVR showed reductions in hypertrophy and fibrosis demonstrating these processes can regress. However, cellular mechanisms, including fibroblast activity, are poorly defined. Objective: Define mechanisms that contribute to remodeling of ECM before and after LVPO. Methods: LVPO was induced using transverse aortic constriction (TAC). LVPO was relieved by removal of the band (unTAC) at 4 wks. Cardiomyocyte cross-sectional area (CSA), collagen volume fraction (CVF), and protein production was measured by histology and immunoblot for five time points: nonTAC, 2wk TAC, 4wk TAC, 4wk TAC+2wk unTAC, and 4wk TAC+4wk unTAC. Results: In response to LVPO, myocyte CSA increased by 23% at 2wk TAC and by 47% at 4wk. CVF increased by 64% and 204% at 2wk and 4wk TAC, respectively, versus nonTAC. In 2wk TAC hearts, SMA, a marker of fibroblast activation was increased as was production of two collagen cross-linking enzymes, lysyl oxidase (LOX) and LOXL2, in the absence of significant increases in markers of ECM degradation. After unloading, myocyte CSA decreased by 20% in 2wk unTAC versus 4wk TAC and CVF decreased by 38% in 4wk unTAC versus 4wk TAC. Coincident with decreases in CVF, levels of pro-MMP2 increased at 2wk unTAC as did levels of degraded collagen measured by collagen hybridizing peptide reactivity. Whereas markers of ECM deposition, LOX and LOXL2, were not increased in unTAC myocardium, a resurgence of SMA production occurred in 2wk unTAC. Conclusions: In LVPO hearts, hypertrophy was characterized by increases in myocyte CSA, greater CVF, and fibroblast activation with increased production of pro-fibrotic ECM. After unloading, hypertrophy and fibrosis significantly decreased accompanied by increases in ECM degrading activity and reductions in proteins that contribute to collagen assembly.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Achim Lother ◽  
Aurelia Hübner ◽  
Ingo Hilgendorf ◽  
Tilman Schnick ◽  
Martin Moser ◽  
...  

Introduction: Inflammation is a key driver for the development of cardiac fibrosis and diastolic dysfunction. Aldosterone promotes the expression of adhesion molecules and vascular inflammation. Thus, the goal of the present study was to examine the significance of endothelial MR for pressure overload induced cardiac inflammation and remodeling. Methods and results: Mice with endothelial cell-specific deletion of the mineralocorticoid receptor (MR Cdh5Cre ) were generated using the Cre/loxP system. MR Cdh5Cre and Cre-negative littermates (MR wildtype ) underwent transverse aortic constriction (TAC, n=5-7 per group). After two weeks of pressure overload echocardiography revealed diastolic dysfunction in MR wildtype (mitral valve E acceleration time TAC 15.7 ± 0.5 vs. sham 12.8 ± 0.4 ms, P<0.05) but not in MR Cdh5Cre mice (TAC 11.2 ± 0.6 vs. sham 12.2 ± 0.9 ms, n.s.). Cardiac hypertrophy (ventricle weight 143.2 ± 5.2 vs. MR wildtype 167.3 ± 6.7 mg, P<0.001) and interstitial fibrosis (sirius red stained area 8.2 ± 4.7 vs. MR wildtype 13.5 ± 4.5 %, P<0.05) following TAC were attenuated in MR Cdh5Cre mice. mRNA expression of atrial natriuretic peptide ( Nppa , 2429 ± 1230 vs. MR wildtype 7051 ± 3182 copies/10 4 copies Rps29 , P<0.01) or the fibrosis marker gene collagen 1a1 ( Col1a1 , 256 ± 89 vs. MR wildtype 432 ± 165 copies/10 4 copies Rps29 , P<0.05) as determined by qRT-PCR confirmed these findings. Cardiac leukocytes were quantitatively analyzed by fluorescence assisted cell sorting using specific antibodies. Numbers of CD45 + leukocytes were similarly increased after TAC in the hearts of both genotypes (MR Cdh5Cre 3840 ± 443 vs. MR wildtype 4051 ± 385 /mg tissue, n.s.). Subtype analysis revealed a shift towards CD45 + CD11b + F4/80 low Ly6C high monocytes vs. CD45 + CD11b + F4/80 high Ly6C low macrophages in the heart of MR wildtype (TAC 20 ± 6 vs. sham 4 ± 1 % of CD45 + CD11b + , P<0.05) but not of MR Cdh5Cre mice (TAC 6 ± 2 vs. sham 3 ± 1 % of CD45 + CD11b + , n.s.). Conclusion: MR deletion from endothelial cells ameliorates left ventricular remodeling and diastolic dysfunction after pressure overload. The protective effect of endothelial MR deletion is associated with a shift towards less pro-inflammatory Ly6C high monocytes and more reparative Ly6C low macrophages.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Christina Westphal ◽  
Daniela Fliegner ◽  
Vera Regitz-Zagrosek

Objectives: Female pressure-overloaded hearts show less fibrosis compared with males. 17β-Estradiol (E2) attenuates cardiac fibrosis in female mice. Whether this is mediated by direct E2-effects on collagen synthesis is still unknown. Therefore, we investigated the role of E2 and estrogen receptors (ER) on collagen I and III expression and analyzed involved mechanisms. Methods: Female C57BL/6J mice (7 weeks) underwent sham operation, ovariectomy (OVX), OVX with E2-supplementation (390mg E2-containing pellets) or placebo. After 2 weeks, animals underwent transverse aortic constriction (TAC) or sham surgery. Mice were sacrificed after 9 weeks. Collagen amount, collagen I and III protein in left ventricular tissue were detected by Sirius Red and antibody staining, respectively. Gene and protein expression were determined by quantitative Real-Time PCR and Western blot. Adult female rat cardiac fibroblasts were treated with E2 (10 -8 M), vehicle, ERα- and β-agonists (10 -7 M) for 24h or pre-treated with PD98059 for 1h. ER binding to the collagen I and III promoter was analyzed by chromatin immunoprecipitation assays. Findings: In female OVX mice, undergoing TAC surgery, E2-supplementation significantly reduced collagen deposition, collagen I and III mRNA and protein levels in comparison with mice without E2. In female rat cardiac fibroblasts, E2 significantly down-regulated collagen I and III mRNA and protein level. Specific ER-agonist-treatment showed that E2-mediated regulation of collagen I and III expression was mediated via activation of ERα, but not ERβ. Further, upon E2-treatment, ERα was phosphorylated at Ser118, which occurred by E2-induced activation of ERK1/2 signaling. Furthermore, we could show that ERα and ERβ bind to two putative half-palindromic estrogen response elements within the collagen I and III promoter in female cardiac fibroblasts. Conclusion: E2 inhibits cardiac collagen I and III mRNA and protein in female mice under pressure overload. Data from rat female cardiac fibroblasts suggest that this is mediated via E2-activated ERK1/2 signaling and ERα, which binds with ERβ to the collagen I and III promoter. Understanding of how E2/ER attenuate collagen I and III expression in pathological hypertrophy may improve therapy.


Cardiology ◽  
2020 ◽  
Vol 145 (3) ◽  
pp. 187-198 ◽  
Author(s):  
Naiyereh Mohammadzadeh ◽  
Arne Olav Melleby ◽  
Sheryl Palmero ◽  
Ivar Sjaastad ◽  
Shukti Chakravarti ◽  
...  

Introduction: The heart undergoes myocardial remodeling during progression to heart failure following pressure overload. Myocardial remodeling is associated with structural and functional changes in cardiac myocytes, fibroblasts, and the extracellular matrix (ECM) and is accompanied by inflammation. Cardiac fibrosis, the accumulation of ECM molecules including collagens and collagen cross-linking, contributes both to impaired systolic and diastolic function. Insufficient mechanistic insight into what regulates cardiac fibrosis during pathological conditions has hampered therapeutic so­lutions. Lumican (LUM) is an ECM-secreted proteoglycan known to regulate collagen fibrillogenesis. Its expression in the heart is increased in clinical and experimental heart failure. Furthermore, LUM is important for survival and cardiac remodeling following pressure overload. We have recently reported that total lack of LUM increased mortality and left ventricular dilatation, and reduced collagen expression and cross-linking in LUM knockout mice after aortic banding (AB). Here, we examined the effect of LUM on myocardial remodeling and function following pressure overload in a less extreme mouse model, where cardiac LUM level was reduced to 50% (i.e., moderate loss of LUM). Methods and Results: mRNA and protein levels of LUM were reduced to 50% in heterozygous LUM (LUM+/–) hearts compared to wild-type (WT) controls. LUM+/– mice were subjected to AB. There was no difference in survival between LUM+/– and WT mice post-AB. Echocardiography revealed no striking differences in cardiac geometry between LUM+/– and WT mice 2, 4, and 6 weeks post-AB, although markers of diastolic dysfunction indicated better function in LUM+/– mice. LUM+/– hearts revealed reduced cardiac fibrosis assessed by histology. In accordance, the expression of collagen I and III, the main fibrillar collagens in the heart, and other ECM molecules central to fibrosis, i.e. including periostin and fibronectin, was reduced in the hearts of LUM+/– compared to WT 6 weeks post-AB. We found no differences in collagen cross-linking between LUM+/– and WT mice post-AB, as assessed by histology and qPCR. Conclusions: Moderate lack of LUM attenuated cardiac fibrosis and improved diastolic dysfunction following pressure overload in mice, adding to the growing body of evidence suggesting that LUM is a central profibrotic molecule in the heart that could serve as a potential therapeutic target.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Hadi Khalil ◽  
Onur Kanisicak ◽  
Robert N. Correll ◽  
Michelle Sargent ◽  
Jeffery D. Molkentin

Heart failure is a progressive disease characterized by cardiomyocyte loss, interstitial fibrosis, and chamber remodeling. During physiological conditions cardiac fibroblasts contribute to the homeostatic maintenance of myocardial structure as well as the maintenance of biochemical, mechanical and electrical properties of the heart. Injury and/or cytokine stimulation activate fibroblasts which transdifferentiate into myofibroblasts. These newly formed cells secrete extracellular matrix (ECM) for wound healing and tissue remodeling through their contractile activity. Fibrosis mediated by these cells can initially be a beneficial response that acutely scarifies areas after an infarct to prevent wall rupture. However, during chronic disease states such as heart failure, persistent recruitment and activation of fibroblasts leads to excessive deposition of ECM that results in stiffening and pathological remodeling of the ventricles. During chronic heart disease, cardiomyocytes, immune cells and fibroblasts secrete the cytokine transforming growth factor-TGFβ, which activates fibroblasts and promotes their conversion to myofibroblasts. Manipulation of TGFβ by losartan, which antagonizes angiotensin II (AngII) and aspects of TGFβ signaling, has shown some anti-fibrotic effects in cardiovascular remodeling. Also deletion of Tgfbr1 (type I TGFβ receptor) in cardiomyocytes or a TGFβ blocking antibody reduced the fibrotic response after pressure overload. However heart failure was not improved because deleterious TGFβ signaling in fibroblasts persisted. We therefore utilized a novel fibroblast-specific inducible Cre-expressing mouse line (Periostin-MerCreMer) to examine the canonical (Smad2/3) TGFβ signaling within fibroblasts to determine how these cells and their activation mediate disease in heart failure. Our data indicate that fibroblast-specific deletion of Smad3 but not Smad2 was sufficient to significantly inhibit myocardial fibrosis. Smad2/3 double nulls were also generated and analyzed, as were TGFBR1 and TGFBR2 loxp targeted mice, also crossed with the Postn-MerCreMer knockin allele to achieve specificity in activated fibroblasts.


1985 ◽  
Vol 248 (6) ◽  
pp. H876-H882 ◽  
Author(s):  
P. Anversa ◽  
A. V. Loud ◽  
V. Levicky ◽  
G. Guideri

To determine whether left ventricular failure after acute myocardial infarction is associated with a growth response of the myocytes that tends to compensate for the loss of muscle mass and function, the left coronary artery in rats was ligated near its origin, and the animals were killed 3 days later. Elevated left ventricular end-diastolic pressure and decreased first derivative of left ventricular pressure and systolic arterial pressure indicated significant impairment of ventricular function. Absolute infarct size, determined morphometrically by measurement of the fraction of myocyte nuclei lost, averaged 57%. Hypertrophy of surviving left ventricular myocytes was 28%, involving a 14% increase in cell length and a 6% increase in diameter. Right ventricular myocyte volume per nucleus increased 21% by a 10% enlargement of cellular diameter with no change in length. These results show on a cellular basis that myocardial hypertrophy in the left ventricle is accomplished by cellular shape changes characteristic of a combination of pressure and volume overload hypertrophy, whereas cellular growth in the right ventricle is consistent with pressure overload hypertrophy.


Author(s):  
Moritz Schnelle ◽  
Iain Sawyer ◽  
Narayana Anilkumar ◽  
Belal A Mohamed ◽  
Daniel A Richards ◽  
...  

Abstract Aims Chronic pressure or volume overload induce concentric vs. eccentric left ventricular (LV) remodelling, respectively. Previous studies suggest that distinct signalling pathways are involved in these responses. NADPH oxidase-4 (Nox4) is a reactive oxygen species-generating enzyme that can limit detrimental cardiac remodelling in response to pressure overload. This study aimed to assess its role in volume overload-induced remodelling. Methods and results We compared the responses to creation of an aortocaval fistula (Shunt) to induce volume overload in Nox4-null mice (Nox4−/−) vs. wild-type (WT) littermates. Induction of Shunt resulted in a significant increase in cardiac Nox4 mRNA and protein levels in WT mice as compared to Sham controls. Nox4−/− mice developed less eccentric LV remodelling than WT mice (echocardiographic relative wall thickness: 0.30 vs. 0.27, P &lt; 0.05), with less LV hypertrophy at organ level (increase in LV weight/tibia length ratio of 25% vs. 43%, P &lt; 0.01) and cellular level (cardiomyocyte cross-sectional area: 323 µm2 vs. 379 μm2, P &lt; 0.01). LV ejection fraction, foetal gene expression, interstitial fibrosis, myocardial capillary density, and levels of myocyte apoptosis after Shunt were similar in the two genotypes. Myocardial phospho-Akt levels were increased after induction of Shunt in WT mice, whereas levels decreased in Nox4−/− mice (+29% vs. −21%, P &lt; 0.05), associated with a higher level of phosphorylation of the S6 ribosomal protein (S6) and the eIF4E-binding protein 1 (4E-BP1) in WT compared to Nox4−/− mice. We identified that Akt activation in cardiac cells is augmented by Nox4 via a Src kinase-dependent inactivation of protein phosphatase 2A. Conclusion Endogenous Nox4 is required for the full development of eccentric cardiac hypertrophy and remodelling during chronic volume overload. Nox4-dependent activation of Akt and its downstream targets S6 and 4E-BP1 may be involved in this effect.


1998 ◽  
Vol 76 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Marian Turcani ◽  
Ruthard Jacob

To test the ability of the heart to express characteristic geometric features of concentric and eccentric hypertrophy concurrently, constriction of the ascending aorta was performed in 4-week-old rats. Simultaneously, these rats were treated with an arteriolar dilator minoxidil. An examination 6 weeks after induction of the hemodynamic overload revealed no signs of congestion in systemic or pulmonary circulation in rats with aortic constriction or minoxidil-treated sham-operated rats. The magnitude of hemodynamic overload caused by aortic constriction or minoxidil treatment could be considered as equivalent, because the same enlargement of left ventricular pressure-volume area was necessary to compensate for either pressure or volume overload. Myocardial contractility decreased in rats with aortic constriction, and the compensation was achieved wholly by the marked concentric hypertrophy. Volume overload in minoxidil-treated rats was compensated partially by the eccentric hypertrophy and partially by the increased myocardial contractility. In contrast, increased lung weight and pleural effusion were found in all minoxidil-treated rats with aortic constriction. Unfavorable changes in left ventricular mass and geometry, relatively high chamber stiffness, and depressed ventricular and myocardial function were responsible for the massive pulmonary congestion.Key words: cardiac hypertrophy, heart failure, pressure overload, volume overload, minoxidil.


2013 ◽  
Vol 114 (8) ◽  
pp. 988-997 ◽  
Author(s):  
Kristin V. T. Engebretsen ◽  
Anne Waehre ◽  
Johannes L. Bjørnstad ◽  
Biljana Skrbic ◽  
Ivar Sjaastad ◽  
...  

On the basis of the role of small, leucine-rich proteoglycans (SLRPs) in fibrogenesis and inflammation, we hypothesized that they could be involved in cardiac remodeling and reverse remodeling as occurs during aortic stenosis and after aortic valve replacement. Thus, in a well-characterized aortic banding-debanding mouse model, we examined the SLRPs decorin and lumican and enzymes responsible for synthesis of their glycosaminoglycan (GAG) chains. Four weeks after banding of the ascending aorta, mice were subjected to a debanding operation (DB) and were subsequently followed for 3 or 14 days. Sham-operated mice served as controls. Western blotting revealed a 2.5-fold increase in the protein levels of glycosylated decorin in mice with left ventricular pressure overload after aortic banding (AB) with a gradual decrease after DB. Interestingly, protein levels of three key enzymes responsible for decorin GAG chain synthesis were also increased after AB, two of them gradually declining after DB. The inflammatory chemokine (C-X-C motif) ligand 16 (CXCL16) was increased after AB but was not significantly altered following DB. In cardiac fibroblasts CXCL16 increased the expression of the GAG-synthesizing enzyme chondroitin polymerizing factor (CHPF). The protein levels of lumican core protein with N-linked oligosaccharides increased by sevenfold after AB and decreased again 14 days after DB. Lumican with keratan sulfate chains was not regulated. In conclusion, this study shows alterations in glycosylated decorin and lumican core protein that might be implicated in myocardial remodeling and reverse remodeling, with a potential important role for CS/DS GAG chain-synthesizing enzymes.


Sign in / Sign up

Export Citation Format

Share Document