Laser-assisted microdissection and real-time PCR detect anti-inflammatory effect of perfluorocarbon

2003 ◽  
Vol 285 (1) ◽  
pp. L55-L62 ◽  
Author(s):  
Katharina von der Hardt ◽  
Michael Andreas Kandler ◽  
Ludger Fink ◽  
Ellen Schoof ◽  
Jörg Dötsch ◽  
...  

The aim of this study was to identify cell types involved in the anti-inflammatory effect of ventilation with perfluorocarbon in vivo. Fifteen anesthetized, surfactant-depleted piglets received either aerosolized perfluorocarbon (Aerosol-PFC), partial liquid ventilation (rLV) at functional residual capacity (FRC) volume (FRC-PLV), or intermittent mandatory ventilation (control). After laser-assisted microdissection of different lung cell types, mRNA expression of IL-8 and ICAM-1 was determined using TaqMan real-time PCR normalized to hypoxanthine phosphoribosyltransferase (HPRT). IL-8 mRNA expression (means ± SE; control vs. Aerosol-PFC) was 356 ± 142 copies IL-8 mRNA/copy HPRT mRNA vs. 3.5 ± 1.8 in alveolar macrophages ( P <0.01); 208 ± 108 vs. 2.7 ± 0.8 in bronchiolar epithelial cells ( P <0.05); 26 ± 11 vs. 0.7 ± 0.2 in alveolar septum cells ( P <0.01); 2.8 ± 1.0 vs. 0.8 ± 0.4 in bronchiolar smooth muscle cells ( P <0.05); and 1.1 ± 0.4 vs. 0.2 ± 0.05 in vascular smooth muscle cells ( P <0.05). With FRC-PLV, IL-8/HPRT mRNA expression was significantly lower in macrophages, bronchiolar epithelial, and vascular smooth muscle cells. ICAM-1 mRNA expression in vascular endothelial cells remained unchanged. Predominantly, alveolar macrophages and bronchiolar epithelial cells were involved in the inflammatory pulmonary process. The anti-inflammatory effect of Aerosol-PFC was most pronounced.

2020 ◽  
Vol 115 (3) ◽  
Author(s):  
Beatrice Pflüger-Müller ◽  
James A. Oo ◽  
Jan Heering ◽  
Timothy Warwick ◽  
Ewgenij Proschak ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Si-yu Zeng ◽  
Li Yang ◽  
Chen-liang Hong ◽  
Hui-qin Lu ◽  
Qiu-jiang Yan ◽  
...  

Calcitonin gene-related peptide (CGRP) has a potent protective action on the cardiovascular system; however, little is known about the role of CGRP in angiotensin II- (Ang II-) induced inflammation of vascular smooth muscle cells (VSMCs). This study is aimed at determining the anti-inflammatory effect of CGRP in Ang II-treated VSMCs and whether a disintegrin and metalloproteinase 17 (ADAM17) modulates this protective action. Small interference RNA (siRNA) and inhibitors of CGRP, epidermal growth factor receptor (EGFR), and extracellular signal-regulated kinase 1/2 (ERK1/2) were adopted to investigate their effect on Ang II-induced inflammation in VSMCs. Here, we found that CGRP could inhibit inflammation and decrease ADAM17 expression and activation of EGFR and ERK1/2 in VSMCs stimulated with Ang II. Results of siRNA demonstrated that ADAM17 siRNA attenuated Ang II-induced inflammation and up-regulation of activities of EGFR and ERK1/2 in VSMCs. Furthermore, the EGFR-ERK1/2 pathway promoted Ang II-induced VSMC inflammation. In summary, these findings identify the anti-inflammatory effect of CGRP in VSMCs stimulated by Ang II and suggest that ADAM17 is involved in the protective effect of CGRP against Ang II-induced inflammation via the EGFR-ERK1/2 pathway in VSMCs.


2012 ◽  
Vol 59 (3) ◽  
Author(s):  
Stefan Tukaj ◽  
Piotr Trzonkowski ◽  
Cecylia Tukaj

Inflammatory response has been recognized as a central feature in the development and progression of atherosclerosis, and VSMCs (Vascular Smooth Muscle Cells) - the main cellular component of media, play an important role in this process. Many reports indicate that the biologically active vitamin D metabolite - 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3) = calcitriol), besides its well established role in calcium homeostasis, plays an essential role in the regulation of the inflammation process. The aim of this study was to determine the regulatory effects of calcitriol, applied at two supra-physiological doses (10 nM and 100 nM), in VSMC culture. Secretion of the pro-inflammatory cytokines, IL-6 and TNF-α, was significantly attenuated in calcitriol-treated VSMC culture, but the level of anti-inflammatory TGF-β was generally unchanged. Since in advanced atherosclerosis lesions several cell types, including VSMCs, overproduce the HSP70 chaperone protein, we also checked the effects of calcitriol on its synthesis. The presence of 1,25(OH)(2)D(3) did not affect HSP70 synthesis under physiological conditions but the synthesis of HSP70 in VSMCs exposed to heat shock was significantly inhibited by calcitriol (=100 nM). We observed that 1,25(OH)(2)D(3) induced SOD 1 activity, stimulated the expression of IκB-α, and did not influence the level of NF-κB-p65 in VSMCs. The results of our study suggest that 1,25(OH)(2)D(3) may serve as a natural anti-inflammatory agent and may therefore play a beneficial role in the physiology of VSMC in some contexts of atherosclerosis.


2021 ◽  
Vol 11 (3) ◽  
pp. 1130
Author(s):  
Chih-Wei Chiu ◽  
Chih-Hao Yang ◽  
Jie-Heng Tsai ◽  
Cheng-Ying Hsieh ◽  
Shih-Yi Huang

Inflammation of the arterial wall is critical to atherosclerosis pathogenesis. The switch of vascular smooth muscle cells (VSMCs) to macrophage-like cells is essential in the exacerbation of vascular inflammation. Platonin, a cyanine photosensitizing dye, exhibits protective effects in sepsis, trauma, and acute ischemic stroke through its anti-inflammatory capacity in macrophages. The present study investigated the effects and underlying mechanisms of platonin in inflammatory VSMCs. Pretreatment with platonin suppressed the expression of inducible nitric oxide synthetase and mature interleukin-1β but not that of monocyte chemoattractant protein-1 (MCP-1) in VSMCs stimulated by a combination of lipopolysaccharide and interferon-γ (LPS/IFN-γ). Furthermore, platonin inhibited LPS/IFN-γ-induced Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation though the direct reduction of p65Ser536 phosphorylation but not the restoration of Inhibitor of nuclear factor kappa B (IκBα) degradation in VSMCs. However, platonin inhibited Oxidized low-density lipoprotein (ox-LDL)-induced MCP-1 production, possibly through the attenuation of Activator protein 1 (AP-1) binding activity and C-Jun N-terminal kinases ½ (JNK1/2) phosphorylation. Platonin also lowered lipid drop accumulation in VSMCs in Oil red O staining assay. The results collectively indicated that platonin has a vascular protective property with potent anti-inflammatory effects in VSMCs. In conclusion, platonin should be a potential for treating vascular inflammatory diseases such as atherosclerosis.


2010 ◽  
Vol 45 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Ping Jiang ◽  
Jinwen Xu ◽  
Shuhui Zheng ◽  
Jinghe Huang ◽  
Qiuling Xiang ◽  
...  

Atherosclerosis is an inflammatory disease where lipopolysaccharide (LPS) triggers the release of inflammatory cytokines that accelerate its initiation and progression. Estrogen has been proven to be vasoprotective against atherosclerosis; however, the anti-inflammatory function of estrogen in the vascular system remains obscure. In this study, we investigated the effect of estrogen on LPS-induced monocyte chemoattractant protein-1 (MCP-1; listed as CCL2 in the MGI database) production in vascular smooth muscle cells (VSMCs). LPS significantly enhances MCP-1 production and this is dependent on nuclear factor κ B (NFκB) signaling, since the use of NFκB inhibitor pyrrolidine dithiocarbamate or the silencing of NFκB subunit p65 expression with specific siRNA largely impairs LPS-enhanced MCP-1 production. On the contrary, 17β-estradiol (E2) inhibits LPS-induced MCP-1 production in a time- and dose-dependent manner, which is related to the suppression of p65 translocation to nucleus. Furthermore, p38 MAPK is rapidly activated in response to LPS, while E2 markedly inhibits p38 MAPK activation. Transfection with p38 MAPK siRNA or the use of p38 MAPK inhibitor SB203580 markedly attenuates LPS-stimulated p65 translocation to nucleus and MCP-1 production, suggesting that E2 suppresses NFκB signaling by the inactivation of p38 MAPK signaling. LPS promotes VSMCs migration and this is abrogated by MCP-1 antibody, implying that MCP-1 may play a major role as an autocrine factor in atherosclerosis. In addition, E2 inhibits LPS-promoted cell migration by downregulation of MCP-1 production. Overall, our results demonstrate that E2 exerts anti-inflammatory property antagonistic to LPS in VSMCs by reducing MCP-1 production, and this effect is related to the inhibition of p38 MAPK/NFκB cascade.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Khatuna Gabunia ◽  
Stephen P Ellison ◽  
James M Richards ◽  
Sheri E Kelemen ◽  
Michael V Autieri

IL-19 is a recently described, putative anti-inflammatory cytokine which had previously been ascribed to be leukocyte specific. IL-19 is not detected in normal artery, but we detected IL-19 in multiple cell types in human atherosclerotic plaque suggesting a role for this interleukin in atherosclerosis. The purpose of this study was to determine whether administration of exogenous IL-19 could attenuate development of pre-formed atherosclerotic plaque, and to identify potential molecular mechanisms. LDLR-/- mice were fed high-fat diet for 12 weeks and then administered with 10ng/g/day IL-19 or PBS for an additional 8 weeks. En face analysis demonstrated that IL-19 could halt, but not reverse existing plaque (26.7+/-1.7%, 41.03+/-3.1%, 23.70+/-2.6% for baseline, PBS control, and IL-19-treated mice). Foam cell formation by macrophages and vascular smooth muscle cells (VSMC) is a hallmark event during atherosclerosis. Nothing has been reported regarding IL-19 effects on macrophage or VSMC lipid uptake; we therefore investigated whether IL-19 affects macrophage and VSMC cholesterol handling. Addition of IL-19 to wild-type bone marrow derived macrophages (BMDM) significantly promoted oxLDL uptake, conversely, BMDM from IL-19-/- mice had significantly less oxLDL uptake compared to wild-type BMDM. Addition of IL-19 to wild type BMDM significantly increased expression of scavenger receptor B1 (SR-B1), and decreased expression of inflammatory cytokines TNFα, IL-12b, MCP1. Interestingly, converse results were obtained with VSMC, as addition of IL-19 to wild-type VSMC decreased uptake of oxLDL ( p<0.05 ) and decreased expression of scavenger receptor CD36. VSMC isolated from IL-19-/- mice had increased uptake of oxLDL (p<0.0001). It is reported that M2 macrophages participate in plaque regression. IL-19 decreased IL-12b and significantly promoted the polarization of anti-inflammatory M2 phenotype in BMDM as evidenced by the increased expression of YM1 and IL-10 mRNA. These data demonstrate that IL-19 can inhibit progression of existing atherosclerotic plaque by modulating lipid metabolism in VSMC and macrophages and by promoting macrophage differentiation into an alternative, anti-inflammatory M2 phenotype.


2019 ◽  
Vol 316 (4) ◽  
pp. C509-C521 ◽  
Author(s):  
Tsubasa S. Matsui ◽  
Shinji Deguchi

The phosphorylation state of myosin regulatory light chain (MRLC) is central to the regulation of contractility that impacts cellular homeostasis and fate decisions. Rho-kinase (ROCK) and myosin light chain kinase (MLCK) are major kinases for MRLC documented to selectively regulate MRLC in a subcellular position-specific manner; specifically, MLCK in some nonmuscle cell types works in the cell periphery to promote migration, while ROCK does so at the central region to sustain contractility. However, it remains unclear whether or not the spatially selective regulation of the MRLC kinases is universally present in other cell types, including dedifferentiated vascular smooth muscle cells (SMCs). Here, we demonstrate the absence of the spatial regulation in dedifferentiated SMCs using both cell lines and primary cells. Thus, our work is distinct from previous reports on cells with migratory potential. We also observed that the spatial regulation is partly induced upon fibronectin stimulation and Krüppel-like factor 4 overexpression. To find clues to the mechanism, we reveal how the phosphorylation state of MRLC is determined within dedifferentiated A7r5 SMCs under the enzymatic competition among three major regulators ROCK, MLCK, and MRLC phosphatase (MLCP). We show that ROCK, but not MLCK, predominantly regulates the MRLC phosphorylation in a manner distinct from previous in vitro-based and in silico-based reports. In this ROCK-dominating cellular system, the contractility at physiological conditions was regulated at the level of MRLC diphosphorylation, because its monophosphorylation is already saturated. Thus, the present study provides insights into the molecular basis underlying the absence of spatial MRLC regulation in dedifferentiated SMCs.


Sign in / Sign up

Export Citation Format

Share Document