Riboflavin uptake transporter Slc52a2 (RFVT2) is upregulated in the mouse mammary gland during lactation

2016 ◽  
Vol 310 (7) ◽  
pp. R578-R585 ◽  
Author(s):  
Alex Man Lai Wu ◽  
Liana Dedina ◽  
Pooja Dalvi ◽  
Mingdong Yang ◽  
John Leon-Cheon ◽  
...  

While it is well recognized that riboflavin accumulates in breast milk as an essential vitamin for neonates, transport mechanisms for its milk excretion are not well characterized. The multidrug efflux transporter ABCG2 in the apical membrane of milk-producing mammary epithelial cells (MECs) is involved with riboflavin excretion. However, it is not clear whether MECs possess other riboflavin transport systems, which may facilitate its basolateral uptake into MECs. We report here that transcripts encoding the second ( SLC52A2) and third ( SLC52A3) member of the recently discovered family of SLC52A riboflavin uptake transporters are expressed in milk fat globules from human breast milk. Furthermore, Slc52a2 and Slc52a3 mRNA are upregulated in the mouse mammary gland during lactation. Importantly, the induction of Slc52a2, which was the major Slc52a riboflavin transporter in the lactating mammary gland, was also observed at the protein level. Subcellular localization studies showed that green fluorescent protein-tagged mouse SLC52A2 mainly localized to the cell membrane, with no preferential distribution to the apical or basolateral membrane in polarized kidney MDCK cells. These results strongly implicate a potential role for SLC52A2 in riboflavin uptake by milk-producing MECs, a critical step in the transfer of riboflavin into breast milk.

1998 ◽  
Vol 83 (5) ◽  
pp. 1810-1810 ◽  
Author(s):  
Susan M. Smith-Kirwin ◽  
Darlise M. O’Connor ◽  
Jennifer Johnston ◽  
Elizabeth de Lancy ◽  
Sandra G. Hassink ◽  
...  

Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.


2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...


2019 ◽  
Vol 13 (2) ◽  
pp. e0007080 ◽  
Author(s):  
Jose Angel Regla-Nava ◽  
Karla M. Viramontes ◽  
Teodora Vozdolska ◽  
Anh-Thy Huynh ◽  
Tom Villani ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1039 ◽  
Author(s):  
Katríona E. Lyons ◽  
C. Anthony Ryan ◽  
Eugene M. Dempsey ◽  
R. Paul Ross ◽  
Catherine Stanton

Human breast milk is considered the optimum feeding regime for newborn infants due to its ability to provide complete nutrition and many bioactive health factors. Breast feeding is associated with improved infant health and immune development, less incidences of gastrointestinal disease and lower mortality rates than formula fed infants. As well as providing fundamental nutrients to the growing infant, breast milk is a source of commensal bacteria which further enhance infant health by preventing pathogen adhesion and promoting gut colonisation of beneficial microbes. While breast milk was initially considered a sterile fluid and microbes isolated were considered contaminants, it is now widely accepted that breast milk is home to its own unique microbiome. The origins of bacteria in breast milk have been subject to much debate, however, the possibility of an entero-mammary pathway allowing for transfer of microbes from maternal gut to the mammary gland is one potential pathway. Human milk derived strains can be regarded as potential probiotics; therefore, many studies have focused on isolating strains from milk for subsequent use in infant health and nutrition markets. This review aims to discuss mammary gland development in preparation for lactation as well as explore the microbial composition and origins of the human milk microbiota with a focus on probiotic development.


2020 ◽  
Vol 8 (2) ◽  
pp. 289 ◽  
Author(s):  
Tabea Rabe ◽  
Katrin Lazar ◽  
Christoffer Cambronero ◽  
Rangmar Goelz ◽  
Klaus Hamprecht

A locally restricted human cytomegalovirus (HCMV) reactivation in the mammary gland commonly occurs in nearly every IgG-seropositive breastfeeding mother. This unique phenomenon can therefore be used to study the reactivation process in an immunocompetent healthy host. Breast milk contains a variety of immunoactive compounds, including immune cells, antibodies, growth factors, and cytokines supporting the newborn’s immature immune system. To characterize the impact of HCMV reactivation on breast milk cytokines, we analyzed longitudinal breast milk samples of four IgG-seropositive and three IgG-seronegative mothers of preterm infants using Proximity Extension Assay (PEA) technology (Olink Proteomics, Uppsala, Sweden). Cytokine profiling revealed elevated cytokine levels in IgG-seropositive mothers’ milk whey. Reactivating mothers showed higher levels of CC-chemokines (MCP-2, CCL19, and CCL20) and CXC-chemokines (IL-8, CXCL9, CXCL10, and CXCL11), such as the proinflammatory cytokine IL-17C, glycoprotein CD5, and TNFSF14. HCMV reactivation seems to influence the cytokine profile in human breast milk. This work could open the door for further studies analyzing distinct relations of the cytokine network as well as phenotypical and functional T cell properties in background of HCMV DNA dynamics in early lactation.


2016 ◽  
Vol 83 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Qiuming Chen ◽  
Yanjun Wu ◽  
Mingyuan Zhang ◽  
Wenwen Xu ◽  
Xiaoping Guo ◽  
...  

Owing to the difficulty in obtaining mammary gland tissue from lactating animals, it is difficult to test the expression levels of genes in mammary gland. The aim of the current study was to identify if milk fat globule (MFG) in buffalo milk was an alternative to mammary gland (MG) and milk somatic cell (MSC) for gene expression analysis. Six buffalos in late lactation were selected to collect MFG and MSC, and then MG was obtained by surgery. MFG was stained with acridine orange to successfully visualise RNA and several cytoplasmic crescents in MFG. The total RNA in MFG was successfully isolated and the integrity was assessed by agarose gel electrophoresis. We analysed the cellular components in MFG, MG and MSC through testing the expression of cell-specific genes by qRT-PCR. The results showed that adipocyte-specific gene (AdipoQ) and leucocyte-specific genes (CD43, CSF1 and IL1α) in MFG were not detected, whereas epithelial cell marker genes (Keratin 8 and Keratin 18) in MFG were higher than in MSC and lower than in MG, fibroblast marker gene (vimentin) in MFG was significantly lower than in MG and MSC, milk protein genes (LALBA, BLG and CSN2) and milk fat synthesis-related genes (ACC, BTN1A1, FABP3 and FAS) in MFG were higher than in MG and MSC. In conclusion, the total RNA in MFG mainly derives from mammary epithelial cells and can be used to study the functional gene expression of mammary epithelial cells.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47876 ◽  
Author(s):  
Sonia M. Rosenfield ◽  
Emma T. Bowden ◽  
Shani Cohen-Missner ◽  
Krissa A. Gibby ◽  
Virginie Ory ◽  
...  

1999 ◽  
Vol 8 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Michael Oladipo Ogundele

Several natural components abundant in the fluid phase of human breast-milk have been shown to be inhibitors of complement activationin vitro, particularly the classical pathway. These include lysozyme, lactoferrin, lactalbumin alpha and other ligand chelators, complement regulator proteins and other specific soluble inhibitors of complement activation. Their physiological significance probably resides in their ability to restrictin vivocomplement activation to specialized (compartmentalized) sites on the cellular membrane structures in human milk, represented by the abundant surface area of the milk fat globule membranes. This would serve to prevent inflammatory-induced tissue damage of the delicate immature gastrointestinal tract of the newborn as well as the mammary gland itself. A number of recognized and potential inhibitors of complement activity in human milk and other biological fluids are hereby reviewed, with a proposal of their physiological significance.Abbreviations: HBM, human breast-milk; APC, alternative complement activation pathway; MAC, membrane attack complex (C5b-9); MFGM, milk fat globule membrane


Sign in / Sign up

Export Citation Format

Share Document