Obese and lean Zucker rats differ in preferences for sham-fed corn oil or sucrose

1990 ◽  
Vol 259 (6) ◽  
pp. R1093-R1095 ◽  
Author(s):  
D. Greenberg ◽  
S. C. Weatherford

Obese Zucker rats show greater preference for fatty foods in dietary selection studies than do lean rats. We wished to evaluate the preference for dietary fats in Zucker rats in the absence of postingestive cues. Zucker rats (6 lean and 6 obese) were fitted with gastric cannulas for sham feeding. All sham-feeding tests lasted for 30 min. On training days, rats were sham fed 100% corn oil or, on alternate days, rats were sham fed various concentrations of sucrose in volumes yoked to intakes of corn oil. On preference test days, rats were offered 100% corn oil and one sucrose concentration simultaneously for sham feeding. During preference tests, obese rats preferred 100% corn oil to 10% sucrose, whereas lean rats preferred 10% sucrose to 100% corn oil. Obese rats equally preferred 17.5% sucrose and 100% corn oil, whereas lean Zucker rats equally preferred 2.5% sucrose and 100% corn oil. When sucrose concentration was increased to 20% both obese and lean Zucker rats preferred sucrose to 100% corn oil. These results combined with our previously reported results showing that intraduodenally administered fats do not differ in satiating potency for obese and lean Zucker rats (6) strongly suggest that the preference of obese rats for fatty foods is largely mediated by orosensory mechanisms.

2012 ◽  
Vol 303 (3) ◽  
pp. F412-F419 ◽  
Author(s):  
Preethi Samuel ◽  
Quaisar Ali ◽  
Rifat Sabuhi ◽  
Yonnie Wu ◽  
Tahir Hussain

High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT1R) vs. AT2-ACE2-angiotensinogen (Ang) (1–7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT1A/BR, ACE, AT2R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT1BR increased, renin decreased, and ACE2, AT2R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT2R, and MasR, and no changes in renin and AT1R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT2R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT1R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension.


2005 ◽  
Vol 153 (6) ◽  
pp. 963-969 ◽  
Author(s):  
Dorte X Gram ◽  
Anker J Hansen ◽  
Michael Wilken ◽  
Torben Elm ◽  
Ove Svendsen ◽  
...  

Objective: It has earlier been demonstrated that capsaicin-induced desensitization improves insulin sensitivity in normal rats. However, whether increased capsaicin-sensitive nerve activity precedes the onset of insulin resistance in diet-induced obesity – and therefore might be involved in the pathophysiology – is not known. Further, it is of relevance to investigate whether capsaicin desensitization improves glycaemic control even in obese individuals and we therefore chose the obese Zucker rats to test this. Design and methods: Plasma levels of calcitonin gene-related peptide (CGRP; a marker of sensory nerve activity) was assessed in 8-week-old Zucker rats. To investigate whether capsaicin desensitization (100 mg/kg at 9 weeks of age) would also ameliorate glycaemia in this non-diabetic model, we assessed oral glucose tolerance at 7 weeks after capsaicin. Results: It was found that plasma CGRP levels were elevated in obese Zucker rats prior to the onset of obesity (16.1±3.4 pmol/l in pre-obese Zucker rats vs 6.9±1.1 pmol/l in lean littermates; P = 0.015) despite similar body weights. Furthermore, capsaicin desensitization reduced both fasting blood glucose (4.3±0.2 mmol/l vs 5.1±0.2 mmol/l in controls; P = 0.050) as well as the mean blood glucose level during an oral glucose tolerance test (OGTT) (6.8±0.3 mmol/l vs 8.6±0.5 mmol/l in control obese rats; P = 0.024) whereas the plasma insulin levels during the OGTT were unchanged. However this did not lead to an improvement in insulin resistance or to a reduction of tissue triglyceride accumulation in muscle or liver. Conclusion: We concluded that capsaicin-induced sensory nerve desensitization improves glucose tolerance in Zucker rats. Since, in this study, plasma CGRP levels, a marker of sensory nerve activity, were increased in the pre-obese rats, our data support the hypothesis that increased activity of sensory nerves precedes the development of obesity and insulin resistance in Zucker rats.


1988 ◽  
Vol 254 (2) ◽  
pp. 483-487 ◽  
Author(s):  
I Dugail ◽  
A Quignard-Boulange ◽  
R Bazin ◽  
X Le Liepvre ◽  
M Lavau

The regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression was studied during the onset of obesity in the genetically obese (fa/fa) rat by determination of GAPDH activity and hybridizable mRNA amounts in adipose tissue and liver from suckling and weanling rats. GADPH activity remained low throughout the suckling period, and a burst of activity occurred after weaning in both lean and obese pups. As early as 7 days of age, adipose tissue from pre-obese rats displayed a significant increase in enzyme activity, whereas no difference could be detected in the liver. In both suckling (16 days of age) and weanling (30 days of age) obese rats a proportionate increase in GAPDH activity and mRNA amounts was observed in adipose tissue, but not in liver. It is concluded that the obese genotype influences GAPDH gene expression at a pretranslational level and in a tissue-specific manner. This phenomenon could partly contribute to the hyperactive fat accretion in the obese rat, since glycolysis is the major metabolic pathway for lipogenic substrates in adipose tissue.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sanket N Patel ◽  
Quaisar Ali ◽  
Ulrike Muscha Steckelings ◽  
Tahir Hussain

The actions of angiotensin II type 2 receptor (AT 2 R) and receptor mas (MasR) are complex but show similar pro-natriuretic function; particularly AT 2 R expression and natriuretic function are enhanced in obese/diabetic rat kidney. In light of previous reports, we tested hypothesis that AT 2 R and MasR are interdependent to produce natriuresis in obese rats due to potential physical interaction. Infusion of AT 2 R agonist C21 (5 μg/kg/min) in obese Zucker rats (OZR) caused diuresis/natriuresis which were attenuated by simultaneous infusion of the AT 2 R antagonist PD123319 (50 μg/kg/min) or the MasR antagonist A-779 (50 μg/kg/min). Similarly, infusion of MasR agonist Ang-(1-7) (110 fmol/kg/min) in OZR caused diuresis/netriuresis, which were attenuated by simultaneous infusion of A-779 or PD123319. Dual labeling of AT 2 R and MasR in OZR kidney slices revealed four-fold co-localization of AT 2 R and MasR (9.83 vs. 2.50 dual labeled cells/1600 μm 2 ) compared with lean rats in which AT 2 R is not natriuretic. Moreover, the AT 2 R co-immunoprecipitates with MasR in cortical homogenate of OZR. Immunoblotting of AT 2 R and MasR with zero length oxidative (sulfhydryl groups) cross-linker cupric-phenanthroline in OZR cortical homogenate revealed a shift of AT 2 R (~62 kDa) and MasR (~54 kDa) bands upward with overlapping migration for their complexes (~160 kDa and 245 kDa) which were sensitive to the reducing β-mercaptoethanol. Similar observations were made in HK-2 cells, where glucose (25 mM) treatment enhanced the crosslinking. Collectively, the study reveals AT2R and MasR are co-localized and functionally interdependent in producing natriuretic response. Hyperglycemic oxidative stress affecting sulfhydryl groups present a potential mechanism of such physical interaction between these receptors. (Support: R01DK061578)


1988 ◽  
Vol 254 (2) ◽  
pp. E162-E166
Author(s):  
S. Holt ◽  
N. J. Rothwell ◽  
M. J. Stock ◽  
D. A. York

Hypophysectomy (HYPX) in genetically obese (fa/fa) Zucker rats significantly reduced body weight and energy gains and stimulated energy expenditure (by 34%), the thermic response to food (by 144%), and brown adipose tissue (BAT) mitochondrial GDP-binding capacity (by 190%) compared with pair-fed, sham-operated obese rats. These changes in energy balance in obese HYPX rats were reversed by corticosterone replacement (1 mg/day), but the increased BAT activity was only partly restored to normal. HYPX had only small effects on energy balance in lean Zucker rats compared with pair-fed, sham-operated lean controls but increased the acute thermic response to food and BAT mitochondrial GDP-binding capacity; these effects were inhibited by replacement of HYPX rats with corticosterone. The results suggest that alterations in the hypothalamic-pituitary-adrenal axis play a fundamental role in the development and maintenance of genetic obesity.


1992 ◽  
Vol 262 (1) ◽  
pp. R33-R38 ◽  
Author(s):  
J. R. Vasselli ◽  
J. A. Fiene ◽  
C. A. Maggio

In growing male obese Zucker rats, hyperphagia reaches a maximum or “breakpoint” and declines at an earlier age with high fat than with chow-type diets. A serial adipose tissue biopsy technique was used to correlate changes of retroperitoneal adipocyte size and feeding behavior in 5- to 7-wk-old male lean and obese rats fed laboratory chow or a 35% fat diet until 30 wk of age. Although chow-fed groups had significantly greater cumulative intake, fat-fed groups had significantly greater body weight gain, retroperitoneal depot weight, and adipocyte number. Mean adipocyte size increased continuously in chow-fed groups but decreased over weeks 20-30 in fat-fed groups, reflecting increased adipocyte number. In fat-fed obese rats, hyperphagia reached a breakpoint at 11 wk and disappeared by 13 wk. In chow-fed obese rats, hyperphagia reached a breakpoint at 15-16 wk and disappeared by 19 wk. Biopsy samples revealed that adipocyte size of fat-fed obese rats was already close to maximal at 10 wk (1.12 micrograms lipid), while that of chow-fed obese rats only approached maximal at 20 wk (0.81 microgram lipid). At these time points, lipoprotein lipase activity paralleled adipocyte size. These data indicate that the duration of the growing obese rat's hyperphagia coincides with adipocyte filling and suggest the existence of feeding stimulatory and inhibitory signals from adipose tissue.


1998 ◽  
Vol 84 (1) ◽  
pp. 253-256 ◽  
Author(s):  
David Megirian ◽  
Jacek Dmochowski ◽  
Gaspar A. Farkas

Megirian, David, Jacek Dmochowski, and Gaspar A. Farkas. Mechanism controlling sleep organization of the obese Zucker rat. J. Appl. Physiol. 84(1): 253–256, 1998.—We tested the hypothesis that the obese ( fa/fa) Zucker rat has a sleep organization that differs from that of lean Zucker rats. We used the polygraphic technique to identify and to quantify the distribution of the three main states of the rat: wakefulness (W), non-rapid-eye-movement (NREM), and rapid-eye-movement (REM) sleep states. Assessment of states was made with light present (1000–1600), at the rats thermoneutral temperature of 29°C. Obese rats, compared with lean ones, did not show significant differences in the total time spent in the three main states. Whereas the mean durations of W and REM states did not differ statistically, that of NREM did ( P = 0.046). However, in the obese rats, the frequencies of switching from NREM sleep to W, which increased, and from NREM to REM sleep, which decreased, were statistically significantly different ( P = 0.019). Frequency of switching from either REM or W state was not significantly different. We conclude that sleep organization differs between lean and obese Zucker rats and that it is due to a disparity in switching from NREM sleep to either W or REM sleep and the mean duration of NREM sleep.


1995 ◽  
Vol 311 (1) ◽  
pp. 161-166 ◽  
Author(s):  
I Uphues ◽  
T Kolter ◽  
B Goud ◽  
J Eckel

Cardiac ventricular tissue of lean and genetically obese (fa/fa) Zucker rats was used to study the expression, subcellular distribution and insulin-induced recruitment of the glucose transporter GLUT4 and to elucidate possible molecular alterations of the translocation process. Hearts were removed from basal and insulin-treated (20 min) lean and obese Zucker rats, and processed for subcellular fractionation and Western blotting of proteins. In obese rats, the total GLUT4 content in a crude membrane fraction was reduced to 75 +/- 8% (P = 0.019) of lean controls. In contrast, GLUT4 abundance in plasma membranes was not significantly different between lean and obese rats with a concomitant decrease (47 +/- 3%) in the microsomal fraction of obese animals. In plasma membranes of lean animals insulin was found to increase the GLUT4 abundance to 294 +/- 43% of control with a significantly (P = 0.009) reduced effect in the obese group (139 +/- 10% of control). In these animals insulin failed to recruit GLUT4 from the microsomal fraction, whereas the hormone induced a significant decrease (41 +/- 4%) of microsomal GLUT4 in lean controls. In GLUT4-enriched membrane vesicles, obtained from cardiac microsomes of lean rats, a 24 kDa GTP-binding protein could be detected, whereas no significant labelling of this species was observed in GLUT4 vesicles prepared from obese animals. In addition to the translocation of GLUT4, insulin was found to promote the movement of the small GTP-binding protein rab4A from the cytosol (decrease to 61 +/- 13% of control) to the plasma membrane (increase to 177 +/- 19% of control) in lean rats with no effect of the hormone on rab4A redistribution in the obese group. In conclusion, cardiac glucose uptake of insulin-resistant obese Zucker rats is subject to multiple cellular abnormalities involving a reduced expression, altered redistribution and defective recruitment of GLUT4. We show here an association of the latter defect with alterations at the level of small GTP-binding proteins possibly leading to an impaired trafficking of GLUT4 in the insulin-resistant state.


2012 ◽  
Vol 302 (10) ◽  
pp. C1539-C1547 ◽  
Author(s):  
Fang Chin Lin ◽  
Astrid Bolling ◽  
Jorid T. Stuenæs ◽  
Kristoffer T. Cumming ◽  
Ada Ingvaldsen ◽  
...  

In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ∼15% lower in epitrochlearis from obese rats compared with lean rats. Insulin-stimulated GS fractional activity and affinity for UDP-glucose were lower (higher Km) in muscles from obese rats. GS Ser641 and Ser645,649,653,657 phosphorylation was higher in insulin-stimulated muscles from obese rats, which agreed with lower GS activation. Contraction-mediated GS dephosphorylation of Ser641, Ser641+645, Ser645,649,653,657, and Ser7+10 was normal in muscles from obese Zucker rats, and GS fractional activity increased to similar levels in epitrochlearis muscles from lean and obese rats. GS affinity for UDP glucose was ∼0.8, ∼0.4, and ∼0.1 mM with assay buffers containing 0, 0.17, and 12 mM glucose 6-phosphate, respectively. Contraction increased affinity for UDP-glucose (reduced Km) at a physiological concentration of glucose 6-phosphate (0.17 mM) to ∼0.2 mM in muscles from both lean and obese rats. Interestingly, in the absence of glucose 6-phosphate in the assay buffer, contraction (and insulin) did not influence GS affinity for UDP-glucose, indicating that affinity is regulated by sensitivity for glucose 6-phosphate. In conclusion, contraction-mediated activation and dephosphorylation of GS were normal in muscles from obese Zucker rats, whereas insulin-mediated GS activation and dephosphorylation were impaired.


1984 ◽  
Vol 221 (3) ◽  
pp. 915-917 ◽  
Author(s):  
R A Challis ◽  
L Budohoski ◽  
B McManus ◽  
E A Newsholme

The decreased sensitivity of glycolysis to insulin seen in isolated soleus muscles from genetically obese Zucker rats was abolished by addition of the adenosine-receptor antagonist 8-phenyltheophylline to the incubation medium; 8-phenyltheophylline had no effect on the sensitivity of glycogen synthesis to insulin. These findings suggest that changes in the sensitivity of glucose utilization by muscles of genetically obese rats may be explained, in part, by a modification in either the concentration of adenosine or the affinity of adenosine receptors in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document