Smad expression during kidney development

2004 ◽  
Vol 286 (4) ◽  
pp. F625-F633 ◽  
Author(s):  
P. Vrljicak ◽  
D. Myburgh ◽  
A. K. Ryan ◽  
M. A. van Rooijen ◽  
C. L. Mummery ◽  
...  

Signaling by the transforming growth factor (TGF)-β superfamily is important during kidney development. Here, we describe the spatial and temporal expression patterns of the Smads, the transcription factors that translate TGF-β signals into gene expression. RT-PCR data and in situ hybridization analysis showed that the receptor-regulated (R) Smads (Smad1, -2, -3, -5, and -8), the common partner Smad (Smad4), and the inhibitory (I) Smads (Smad6 and -7) were all expressed during mouse kidney development from embryonic day 12 until the end of nephrogenesis at postnatal day 15. Each Smad had a distinct spatial distribution. All were expressed by mesenchymal cells in the nephrogenic zone and were downregulated once these cells began to epithelialize. The common partner Smad, Smad4, was present in uninduced mesenchymal cells and at ureteric bud tips. The bone morphogenetic-responsive R-Smads, Smad1, -5, and -8, were mainly expressed in the nephrogenic zone, whereas the TGF-β- responsive R-Smads were predominantly noted in the medullary interstitium. Expression of the I-Smad Smad7 was also seen in mesenchymal cells in the interstitium. Based on the observed patterns of expression, we speculate that individual or combinations of Smads may play specific roles in cell-fate determination during kidney development.

2021 ◽  
Author(s):  
Harold Suárez-Baron ◽  
Juan F Alzate ◽  
Favio González ◽  
Soraya Pelaz ◽  
Barbara A Ambrose ◽  
...  

AbstractBackground and AimsThe epidermis constitutes the outermost tissue of the plant body. Although it plays major structural, physiological and ecological roles in embryophytes, the molecular mechanisms controlling epidermal cell fate, differentiation and trichome development have been scarcely studied across angiosperms, and remain almost unexplored in floral organs.MethodsIn this study, we assess the spatio-temporal expression patterns of GL2, GL3, TTG1, TRY, MYB5, MYB6, HDG2, MYB106-like, WIN1 and RAV1-like homologues in the magnoliid Aristolochia fimbriata (Aristolochiaceae) by using comparative RNA-sequencing and in situ hybridization assays.Key ResultsGenes involved in Aristolochia fimbriata trichome development vary depending on the organ where they are formed. Stem, leaf and pedicel trichomes recruit most of the transcription factors (TFs) described above. Conversely, floral trichomes only use a small subset of genes including AfimGL2, AfimRAV1-like, AfimWIN1, AfimMYB106-like and AfimHDG2. The remaining TFs, AfimTTG1, AfimGL3, AfimTRY, AfimMYB5 and AfimMYB6, are restricted to the abaxial (outer) and the adaxial (inner) pavement epidermal cells.ConclusionsWe re-evaluate the core genetic network shaping trichome fate in flowers of an early-divergent angiosperm lineage and show a morphologically diverse output with a simpler genetic mechanism in place when compared to the models Arabidopsis thaliana and Cucumis sativus. In turn, our results strongly suggest that the canonical trichome gene expression appears to be more conserved in vegetative than in floral tissues across angiosperms.


1997 ◽  
Vol 272 (1) ◽  
pp. F79-F86 ◽  
Author(s):  
M. R. Goldberg ◽  
J. Barasch ◽  
A. Shifteh ◽  
V. D'Agati ◽  
J. A. Oliver ◽  
...  

Cell-to-cell interaction is fundamental to the development of the kidney. Ureteric bud cells, through cell contact or short-distance interactions, induce the metanephric mesenchyme to convert, to epithelia and begin the process of tubulogenesis. To identify new molecules that are involved in these processes, we generated a panel of monoclonal antibodies (MAbs) to the surface of induced mesenchymal cells taken from a day 15 rat embryonic kidney rudiment. MAbs were chosen for further study based either on a distinctive pattern of expression of their antigens or their functional effect on tubulogenesis. We identified a set of MAbs that preferentially stained the glomerular crevice, the first site for formation of the glomerular anlage. Another MAb inhibited tubulogenesis by producing widespread apoptosis in induced mesenchymal cells. This approach promises to identify new molecules that are central to kidney development.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 588
Author(s):  
He ◽  
Zhou ◽  
Ding ◽  
Teng ◽  
Yan ◽  
...  

The MEF2 (myocyte enhancer factor 2) family belongs to the MADS-box superfamily of eukaryotic transcription factors. The vertebrate genes compose four distinct subfamilies designated MEF2A, -B, -C, and -D. There are multiple mef2 genes in the common carp (Cyprinus carpio). So far, the embryonic expression patterns of these genes and the evolution of fish mef2 genes have been barely investigated. In this study, we completed the coding information of C. carpio mef2ca2 and mef2d1 genes via gene cloning and presented two mosaic mef2 sequences as evidence for recombination. We also analyzed the phylogenetic relationship and conserved synteny of mef2 genes and proposed a new evolutionary scenario. In our version, MEF2B and the other three vertebrate subfamilies were generated in parallel from the single last ancestor via two rounds of whole genome duplication events that occurred at the dawn of vertebrates. Moreover, we examined the expression patterns of C. carpio mef2 genes during embryogenesis, by using whole-mount in situ hybridization, and found the notochord to be a new expression site for these genes except for mef2ca1&2. Our results thus provide new insights into the evolution and expression of mef2 genes.


Development ◽  
1999 ◽  
Vol 126 (15) ◽  
pp. 3415-3424 ◽  
Author(s):  
Y. Hamada ◽  
Y. Kadokawa ◽  
M. Okabe ◽  
M. Ikawa ◽  
J.R. Coleman ◽  
...  

Notch family genes encode transmembrane proteins involved in cell-fate determination. Using gene targeting procedures, we disrupted the mouse Notch2 gene by replacing all but one of the ankyrin repeat sequences in the cytoplasmic domain with the E. coli (beta)-galactosidase gene. The mutant Notch2 gene encodes a 380 kDa Notch2-(beta)-gal fusion protein with (beta)-galactosidase activity. Notch2 homozygous mutant mice die prior to embryonic day 11.5, whereas heterozygotes show no apparent abnormalities and are fully viable. Analysis of Notch2 expression patterns, revealed by X-gal staining, demonstrated that the Notch2 gene is expressed in a wide variety of tissues including neuroepithelia, somites, optic vesicles, otic vesicles, and branchial arches, but not heart. Histological studies, including in situ nick end labeling procedures, showed earlier onset and higher incidence of apoptosis in homozygous mutant mice than in heterozygotes or wild type mice. Dying cells were particularly evident in neural tissues, where they were seen as early as embryonic day 9.5 in Notch2-deficient mice. Cells from Notch2 mutant mice attach and grow normally in culture, demonstrating that Notch2 deficiency does not interfere with cell proliferation and that expression of the Notch2-(beta)-gal fusion protein is not toxic per se. In contrast to Notch1-deficient mice, Notch2 mutant mice did not show disorganized somitogenesis, nor did they fail to properly regulate the expression of neurogenic genes such as Hes-5 or Mash1. In situ hybridization studies show no indication of altered Notch1 expression patterns in Notch2 mutant mice. The results indicate that Notch2 plays an essential role in postimplantation development in mice, probably in some aspect of cell specification and/or differentiation, and that the ankyrin repeats are indispensable for its function.


Development ◽  
1998 ◽  
Vol 125 (17) ◽  
pp. 3473-3482 ◽  
Author(s):  
R.E. Godin ◽  
N.T. Takaesu ◽  
E.J. Robertson ◽  
A.T. Dudley

Members of the Bone Morphogenetic Protein (BMP) family exhibit overlapping and dynamic expression patterns throughout embryogenesis. However, little is known about the upstream regulators of these important signaling molecules. There is some evidence that BMP signaling may be autoregulative as demonstrated for BMP4 during tooth development. Analysis of BMP7 expression during kidney development, in conjunction with studies analyzing the effect of recombinant BMP7 on isolated kidney mesenchyme, suggest that a similar mechanism may operate for BMP7. We have generated a beta-gal-expressing reporter allele at the BMP7 locus to closely monitor expression of BMP7 during embryonic kidney development. In contrast to other studies, our analysis of BMP7/lacZ homozygous mutant embryos, shows that BMP7 expression is not subject to autoregulation in any tissue. In addition, we have used this reporter allele to analyze the expression of BMP7 in response to several known survival factors (EGF, bFGF) and inducers of metanephric mesenchyme, including the ureteric bud, spinal cord and LiCl. These studies show that treatment of isolated mesenchyme with EGF or bFGF allows survival of the mesenchyme but neither factor is sufficient to maintain BMP7 expression in this population of cells. Rather, BMP7 expression in the mesenchyme is contingent on an inductive signal. Thus, the reporter allele provides a convenient marker for the induced mesenchyme. Interestingly LiCl has been shown to activate the Wnt signaling pathway, suggesting that BMP7 expression in the mesenchyme is regulated by a Wnt signal. Treatment of whole kidneys with sodium chlorate to disrupt proteoglycan synthesis results in the loss of BMP7 expression in the mesenchyme whereas expression in the epithelial components of the kidney are unaffected. Heterologous recombinations of ureteric bud with either limb or lung mesenchyme demonstrate that expression of BMP7 is maintained in this epithelial structure. Taken together, these data indicate that BMP7 expression in the epithelial components of the kidney is not dependent on cell-cell or cell-ECM interactions with the metanephric mesenchyme. By contrast, BMP7 expression in the metanephric mesenchyme is dependent on proteoglycans and possibly Wnt signaling.


2019 ◽  
Vol 6 ◽  
pp. 205435811987193
Author(s):  
Rosalie E. O’Hara ◽  
Michel G. Arsenault ◽  
Blanca P. Esparza Gonzalez ◽  
Ashley Patriquen ◽  
Sunny Hartwig

Background: Nephron progenitor cells derived from the metanephric mesenchyme undergo a complex balance of self-renewal and differentiation throughout kidney development to give rise to the mature nephron. Cell proliferation is an important index of progenitor population dynamics. However, accurate and reproducible in situ quantification of cell proliferation within progenitor populations can be technically difficult to achieve due to the complexity and harsh tissue treatment required of certain protocols. Objective: To optimize and compare the performance of the 3 most accurate S phase–specific labeling methods used for in situ detection and quantification of nephron progenitor and ureteric bud cell proliferation in the developing kidney, namely, 5-bromo-2’-deoxyuridine (BrdU), 5-ethynyl-2’-deoxyuridine (EdU), and proliferating cell nuclear antigen (PCNA). Methods: Protocols for BrdU, EdU, and PCNA were optimized for fluorescence labeling on paraformaldehyde-fixed, paraffin-embedded mouse kidney tissue sections, with co-labeling of nephron progenitor cells and ureteric bud with Six2 and E-cadherin antibodies, respectively. Image processing and analysis, including quantification of proliferating cells, were carried out using free ImageJ software. Results: All 3 methods detect similar ratios of nephron progenitor and ureteric bud proliferating cells. The BrdU staining protocol is the lengthiest and most complex protocol to perform, requires tissue denaturation, and is most subject to interexperimental signal variability. In contrast, bound PCNA and EdU protocols are relatively more straightforward, consistently yield clear results, and far more easily lend themselves to co-staining; however, the bound PCNA protocol requires substantive additional postexperimental analysis to distinguish the punctate nuclear PCNA staining pattern characteristic of proliferating cells. Conclusions: All 3 markers exhibit distinct advantages and disadvantages in quantifying cell proliferation in kidney progenitor populations, with EdU and PCNA protocols being favored due to greater technical ease and reproducibility of results associated with these methods.


2017 ◽  
Vol 95 (3) ◽  
pp. 421-427 ◽  
Author(s):  
Peter K. Eck ◽  
Christopher Corpe ◽  
Mark A. Levine

The two membrane transporters Slc23a1 and Slc23a2 mediate ascorbic acid uptake into cells. We recently determined the key role of Slc23a1 in renal re-absorption of ascorbic acid in a knockout mouse model. However, the renal spatial and temporal expression patterns of murine Slc23a1 and Slc23a2 are not defined. This study utilizes database evidence combined with experimental confirmation via in-situ hybridization to define the spatial and temporal expression of Slc23a1 in the murine kidney. Slc23a1 is expressed in the early proximal tubule, but not in its precursors during embryonic development, and exclusive proximal tubular expression persists throughout the animal’s lifetime. In contrast, Slc23a2 is uniformly expressed in metabolic cell types such as stromal cells. The expression patterns appear to be conserved from rodent lineages to humans.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1669-1680 ◽  
Author(s):  
L.W. Reneker ◽  
D.W. Silversides ◽  
K. Patel ◽  
P.A. Overbeek

Growth factors are believed to play an important role in regulating cell fate and cell behavior during embryonic development. Transforming growth factor alpha (TGF alpha), a member of the epidermal growth factor (EGF) superfamily, is a small polypeptide growth factor. Upon binding to its receptor, the EGF receptor (EGFR), TGF alpha can exert diverse biological activities, such as induction of cell proliferation or differentiation. To explore the possibility that TGF alpha might regulate cell fate during murine eye development, we generated transgenic mice that express human TGF alpha in the lens under the control of the mouse alpha A-crystallin promoter. The transgenic mice displayed multiple eye defects, including corneal opacities, cataracts and microphthalmia. At early embryonic stages TGF alpha induced the perioptic mesenchymal cells to migrate abnormally into the eye and accumulate around the lens. In situ hybridization revealed that the EGFR mRNA is highly expressed in the perioptic mesenchyme, suggesting that the migratory response is mediated by receptor activation. In order to test this model, the TGF alpha transgenic mice were bred to EGFR mutant waved-2 (wa-2) mice. We found that the eye defects of the TGF alpha transgenic mice are significantly abated in the wa-2 homozygote background. Because the EGFR mutation in the wa-2 mice is located in the receptor kinase domain, this result indicates that the receptor tyrosine kinase activity is critical for signaling the migratory response. Taken together, our studies demonstrate that TGF alpha is capable of altering the migratory decisions and behavior of perioptic mesenchyme during eye development.


2000 ◽  
Vol 23 (1) ◽  
pp. 145-148 ◽  
Author(s):  
Jane E. Gabriel ◽  
Helena J. Alves ◽  
Lucia E. Alvares ◽  
Gilberto S. Schmidt ◽  
Luiz L. Coutinho

In situ hybridization has provided insights into the molecular basis of skeletal myogenesis during embryonic development. In situ detection of different muscle-specific regulatory factors in whole embryos has been described. Spatial and temporal expression patterns of these factors differed among species. The expression pattern of MyoD in whole chicken embryos was studied via in situ hybridization using a probe obtained by the reverse transcription - polymerase chain reaction (RT-PCR) technique. In newly formed somites (embryos of stage 12), MyoD mRNA transcripts were detected along the anterior to posterior axis of somites immediately adjacent to the neural tube, whereas in mature somites (embryos of stage 24), MyoD transcripts were detected throughout the entire somite. These results indicate that MyoD expression is important for initiating and maintaining the avian myogenic system.


Sign in / Sign up

Export Citation Format

Share Document