Contractile properties of cultured glomerular mesangial cells

1985 ◽  
Vol 249 (4) ◽  
pp. F457-F463 ◽  
Author(s):  
J. I. Kreisberg ◽  
M. Venkatachalam ◽  
D. Troyer

The glomerular mesangium is composed of matrix material and at least two cell types. One is a bone marrow-derived phagocyte and the other is a smooth muscle-like cell. The phagocytic cell represents approximately 3-7% of the total mesangial cell population. The other, more abundant, cell type appears to be contractile and therefore has been proposed to play a role in regulating the surface area for filtration, one component of the ultrafiltration coefficient, Kf. In this review we discuss the contractile properties of cultured mesangial cells as well as the phenotypic alterations that lead to loss of isotonic contraction after prolonged culture.

1992 ◽  
Vol 263 (1) ◽  
pp. F97-F102 ◽  
Author(s):  
D. W. Coyne ◽  
M. Nickols ◽  
W. Bertrand ◽  
A. R. Morrison

The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), potently induce prostaglandin formation in glomerular mesangial cells. Mechanisms by which these cytokines stimulate prostaglandin formation vary among cell types. We investigated whether alterations in phospholipase A2 (PLA2) or cyclooxygenase (COX) mass and activity contribute to the changes in mesangial cell prostaglandin production. These cytokines induced COX activity and mass in a time-dependent manner, which paralleled prostaglandin production. IL-1 increased COX mass approximately threefold by 24 h. TNF had a much smaller effect, although it appeared to be additive with IL-1. IL-1-induced COX mass was maintained at an increased level for at least 48 h. The glucocorticoid dexamethasone (DEX) virtually abolished prostaglandin production and blocked cytokine induction of COX activity and mass. DEX did not reduce COX activity or mass below the basal, serum-fed levels, however. By utilizing stable isotope methods, we could demonstrate that IL-1 increased free arachidonate levels, implying new PLA2 synthesis over a time course that was maximal at 6 h and was cycloheximide and actinomycin D sensitive. These data demonstrate that the cytokines IL-1 and TNF enhance synthesis of COX and PLA2, contributing to increased prostaglandin production. Cytokine-stimulated prostaglandin production ceases when cells are also treated with DEX, although control levels of COX activity and mass remain. This occurs because DEX inhibits the IL-1-induced enhanced arachidonate release.


1990 ◽  
Vol 172 (6) ◽  
pp. 1843-1852 ◽  
Author(s):  
P A Marsden ◽  
B J Ballermann

Endothelium-derived nitric oxide (NO) causes vasodilatation by activating soluble guanylate cyclase, and glomerular mesangial cells respond to NO with elevations of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). We explored whether mesangial cells can be stimulated to produce NO and whether NO modulates mesangial cell function in an autocrine or paracrine fashion. Tumor necrosis factor alpha (TNF-alpha) raised mesangial cell cGMP levels in a time- and concentration-dependent manner (threshold dose 1 ng/ml, IC50 13.8 ng/ml, maximal response 100 ng/ml). TNF-alpha-induced increases in mesangial cGMP content were evident at 8 h and maximal at 18-24 h. The TNF-alpha-induced stimulation of mesangial cell cGMP production was abrogated by actinomycin D or cycloheximide suggesting dependence on new RNA or protein synthesis. Hemoglobin and methylene blue, both known to inhibit NO action, dramatically reduced TNF-alpha-induced mesangial cell cGMP production. Superoxide dismutase, known to potentiate NO action, augmented the TNF-alpha-induced effect. Ng-monomethyl-L-arginine (L-NMMA) decreased cGMP levels in TNF-alpha-treated, but not vehicle-treated mesangial cells in a concentration-dependent manner (IC50 53 microM). L-arginine had no effect on cGMP levels in control or TNF-alpha-treated mesangial cells but reversed L-NMMA-induced inhibition. Interleukin 1 beta and lipopolysaccharide (LPS), but not interferon gamma, also increased mesangial cell cGMP content. Transforming growth factor beta 1 blunted the mesangial cell response to TNF-alpha. TNF-alpha-induced L-arginine-dependent increases in cGMP were also evident in bovine renal artery vascular smooth muscle cells, COS-1 cells, and 1502 human fibroblasts. These findings suggest that TNF-alpha induces expression in mesangial cell of an enzyme(s) involved in the formation of L-arginine-derived NO. Moreover, the data indicate that NO acts in an autocrine and paracrine fashion to activate mesangial cell soluble guanylate cyclase. Cytokine-induced formation of NO in mesangial and vascular smooth muscle cells may be implicated in the pathogenesis of septic shock.


Development ◽  
1987 ◽  
Vol 100 (4) ◽  
pp. 661-671 ◽  
Author(s):  
B. Kramer ◽  
A. Andrew ◽  
B.B. Rawdon ◽  
P. Becker

To determine whether mesenchyme plays a part in the differentiation of gut endocrine cells, proventricular endoderm from 4- to 5-day chick or quail embryos was associated with mesenchyme from the dorsal pancreatic bud of chick embryos of the same age. The combinations were grown on the chorioallantoic membranes of host chick embryos until they reached a total incubation age of 21 days. Proventricular or pancreatic endoderm of the appropriate age and species reassociated with its own mesenchyme provided the controls. Morphogenesis in the experimental grafts corresponded closely to that in proventricular controls, i.e. the pancreatic mesenchyme supported the development of proventricular glands from proventricular endoderm. Insulin, glucagon and somatostatin cells and cells with pancreatic polypeptide-like immunoreactivity differentiated in the pancreatic controls. The latter three endocrine cell types, together with neurotensin and bombesin/gastrin-releasing polypeptide (GRP) cells, developed in proventricular controls and experimental grafts. The proportions of the major types common to proventriculus and pancreas (somatostatin and glucagon cells) were in general similar when experimental grafts were compared with proventricular controls but different when experimental and pancreatic control grafts were compared. Hence pancreatic mesenchyme did not materially affect the proportions of these three cell types in experimental grafts, induced no specific pancreatic (insulin) cell type and allowed the differentiation of the characteristic proventricular endocrine cell types, neurotensin and bombesin/GRP cells. However, an important finding was a significant reduction in the proportion of bombesin/GRP cells, attributable in part to a decrease in their number and in part to an increase in the numbers of endocrine cells of the other types. This indicates that mesenchyme may well play a part in determining the regional specificity of populations of gut endocrine cells.


2020 ◽  
Vol 295 (42) ◽  
pp. 14262-14278
Author(s):  
Soumya Maity ◽  
Falguni Das ◽  
Balakuntalam S. Kasinath ◽  
Nandini Ghosh-Choudhury ◽  
Goutam Ghosh Choudhury

Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase–interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.


2000 ◽  
Vol 6 (S2) ◽  
pp. 624-625
Author(s):  
K. Seta ◽  
C. Wei

C-type natriuretic peptide (CNP) of endothelial cell origin via NPR-B receptor mediates antimitogenic and vasodilatory actions. As a circulating endocrine system, CNP plays a fundamental role in cardiorenal regulation. However, the actions of CNP on renal mesangial cell apoptosis remain poorly defined. Apoptosis might plays an important role during development of renal glomerular mesangial cells pathophysiology. The mechanisms of apoptosis include p53-dependent pathway and p53-independent pathway.The hypothesis of this study is that CNP induces apoptosis through the process involving p53 gene in human glomerular mesangial cells via natriuretic peptide biological receptor. Therefore, the current study was designed to investigate the effects of CNP on apoptosis and p53 expression in human mesangial cell in the absence or presence of CNP biological receptor antagonist.Cultured human mesangial cells (Clontech Lab., San Diego, CA) was incubated for 24 hours in the absence or presence of CNP (10-7 M). These studies were repeated with HS 142-1 (HS, 10-5 M), a CNP biological receptor antagonist.


1989 ◽  
Vol 257 (3) ◽  
pp. F478-F485
Author(s):  
T. C. Knauss ◽  
P. Mene ◽  
S. A. Ricanati ◽  
M. Kester ◽  
G. R. Dubyak ◽  
...  

Glomerulonephritis is frequently associated with immunoglobulin deposition in the mesangium. We had previously shown that contractile, rat mesangial cells in culture synthesize superoxide anion after binding immune complexes (IC) in a manner dependent on the Fc region of immunoglobulin G (IgG). We now studied the effects of soluble IC on mesangial cell cytosolic free calcium ([Ca2+]i) and phosphatidylinositol turnover as putative mechanisms of transmembrane signaling as well as prostaglandin biosynthesis and contraction. IC (500 micrograms specific antibody) raised [Ca2+]i in mesangial cells loaded with fura-2 from resting levels of 100.4 +/- 8.0 to a peak of 282.3 +/- 31.5 nM in a dose-dependent manner. Removal of extracellular Ca2+ by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid only slightly reduced peak, IC-stimulated [Ca2+]i to 236 +/- 18 nM but prevented the sustained phase of the response, indicating that IC both mobilized Ca2+ from intracellular stores and increased the influx of Ca2+ across the plasma membrane. IC did not increase water-soluble inositol phosphates, measured by anion-exchange chromatography of trichloroacetic acid-extracted cells but markedly stimulated PGE2 and thromboxane B2 synthesis in a dose- and time-dependent manner. Finally, IC (250 micrograms specific antibody) induced 45.8 +/- 10.1% of the cells to contract with an average decrease in cross-sectional surface area of 20.0 +/- 1.8% of basal as assessed by image-analysis microscopy. IC formed with F(ab')2 fragments of antibody and antigen or mixtures of antigen and nonimmune whole molecule antibody did not alter [Ca2+]i, induce prostaglandin synthesis, or stimulate mesangial cell contraction.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Rainer Ebid ◽  
Julia Lichtnekert ◽  
Hans-Joachim Anders

Glomerular mesangial cells (MC), like most cell types secrete hyaluronan (HA), which attached to the cell surface via CD44, is the backbone of a hydrophilic gel matrix around these cells. Reduced extracellular matrix thickness and viscosity result from HA cleavage during inflammation. HA fragments were reported to trigger innate immunity via Toll-like receptor-(TLR-) 2 and/or TLR4 in immune cells. We questioned whether HA fragments also regulate the immunostimulatory capacity of smooth muscle cell-like MC. LPS (TLR4-ligand) and PAM3CysSK4 (TLR2-ligand) induced IL-6 secretion in MC; highly purified endotoxin-free HA < 3000 Da up to 50 μg/mL did not. Bovine-testis-hyaluronidase from was used to digest MC-HA into HA fragments of different size directly in the cell culture. Resultant HA fragments did not activate TLR4-deficient MC, while TLR2-deficient MC responded to LPS-contamination of hyaluronidase, not to produced HA fragments. Hyaluronidase increased the stimulatory effect of TLR2-/-3/-5 ligands on their TLR-receptors in TLR4-deficient MC, excluding any effect by LPS-contamination. Supplemented heparin suppressed every stimulatory effect in a dose-dependent manner. We conclude that the glycosaminoglycan HA creates a pericellular jelly barrier, which covers surface receptors like the TLRs. Barrier-thickness and viscosity balanced by HA-synthesis and degradation and the amount of HA-receptors on the cell surface regulate innate immunity via the accessibility of the receptors.


1992 ◽  
Vol 2 (10) ◽  
pp. S88
Author(s):  
M Davies ◽  
G J Thomas ◽  
L D Shewring ◽  
R M Mason

In cultures of human adult glomerular mesangial cells, large chondroitin sulfate proteoglycans (CSPG) and small dermatan sulfate proteoglycans (DSPG) are synthesized. The large CSPG has a core protein, M(r) of 400,000 (major) and M(r) of 500,000 (minor), and binds to hyaluronic acid to form large aggregates. The two small DSPGs (Mr of approximately 350,000 and M(r) of approximately 200,000) were related to biglycan and decorin, respectively. The majority of these proteoglycans were located in the culture medium, but a hydrophobic form of the CSPG was extracted from the cell layer. Mesangial cells in the growing phase synthesized and secreted all three types of proteoglycans, but in cells arrested in G0 by serum deprivation the incorporation of (35S)sulfate in CSPG was drastically reduced. In the same cells stimulated to proliferate by replacing the medium with one containing serum, the synthesis of CSPG dramatically enhanced. The synthesis of CSPG and DSPG was also elevated in cells cocultured with cytokines but in contrast was significantly reduced when cultured in medium containing hyperglycemic levels of glucose. Finally, preliminary experiments are reported that indicate that CSPG and DSPG bind to low-density lipoproteins in vitro. These observations suggest a possible specialized function for proteoglycans in cellular processes characteristic of glomerular disease.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Hong-Min Chen ◽  
Jia-Jia Dai ◽  
Rui Zhu ◽  
Xue-Yu Sang ◽  
Fang-Fang Peng ◽  
...  

Abstract High glucose (HG)-induced mitochondrial dynamic changes and oxidative damage are closely related to the development and progression of diabetic kidney disease (DKD). Recent studies suggest that regulators of calcineurin 1 (RCAN1) is involved in the regulation of mitochondrial function in different cell types, so we investigate the role of RCAN1 in mitochondrial dynamics under HG ambience in rat glomerular mesangial cells (MCs). MCs subjected to HG exhibited an isoform-specific up-regulation of RCAN1.4 at both mRNA and protein levels. RCAN1.4 overexpression induced translocation of Dynamin related protein 1 (Drp1) to mitochondria, mitochondrial fragmentation and depolarization, accompanied by increased matrix production under normal glucose and HG ambience. In contrast, decreasing the expression of RCAN1.4 by siRNA inhibited HG-induced mitochondrial fragmentation and matrix protein up-regulation. Moreover, both mitochondrial fission inhibitor Mdivi-1 and Drp1 shRNA prevented RCAN1.4-induced fibronectin up-regulation, suggesting that RCAN1.4-induced matrix production is dependent on its modulation of mitochondrial fission. Although HG-induced RCAN1.4 up-regulation was achieved by activating calcineurin, RCAN1.4-mediated mitochondrial fragmentation and matrix production is independent of calcineurin activity. These results provide the first evidence for the HG-induced RCAN1.4 up-regulation involving increased mitochondrial fragmentation, leading to matrix protein up-regulation.


1992 ◽  
Vol 2 (10) ◽  
pp. S95
Author(s):  
F Pugliese ◽  
G A Cinotti ◽  
P Menè

We evaluated the importance of the net charge of polyionic macromolecules in the regulation of cultured human mesangial cell growth. Structurally unrelated polyanionic compounds, i.e., heparin, suramin, poly-L-aspartic acid, and poly-L-glutamic acid, strongly inhibited 10% fetal bovine serum-stimulated cell proliferation. On the other hand, two polycations, protamin sulfate and poly-L-lysine, were equally effective in inhibiting cell growth. The antiproliferative activity of each compound was neutralized by molecules with opposite net charge. These data indicate that both anionic and cationic macromolecules exert an antimitogenic effect on cultured human mesangial cells. This inhibitory effect is dependent upon charge density rather than on the net electric charge of each compound.


Sign in / Sign up

Export Citation Format

Share Document