Met -/- kidneys express epithelial cells that chemotax and form tubules in response to EGF receptor ligands

1997 ◽  
Vol 272 (2) ◽  
pp. F222-F228
Author(s):  
C. Kjelsberg ◽  
H. Sakurai ◽  
K. Spokes ◽  
C. Birchmeier ◽  
I. Drummond ◽  
...  

The growth factor/receptor combination of hepatocyte growth factor (HGF)/c-met has been postulated to be critical for mesenchymal-to-epithelial conversion and tubule formation in the developing kidney. We therefore isolated and immortalized cells from embryonic kidneys of met -/- transgenic mice to determine whether these cells were epithelial and able to chemotax and form tubules in vitro. The cells were immortalized with retrovirus expressing human papillomavirus 16 (HPV 16) E6/E7 genes. Two rapidly dividing clones were isolated and found to express the epithelial cell markers cytokeratin, zonula occludens-1, and E-cadherin but not to express the fibroblast marker vimentin. The met -/- cells were able to chemotax in response to epidermal growth factor and transforming growth factor-alpha (TGF-alpha) and form tubules in vitro in response to TGF-alpha but not HGF. These experiments suggest that the HGF/c-met axis is not essential for epithelial cell development in the embryonic kidney and demonstrate that other growth factors are capable of supporting early tubulogenesis.

1994 ◽  
Vol 267 (6) ◽  
pp. L728-L738 ◽  
Author(s):  
F. Kheradmand ◽  
H. G. Folkesson ◽  
L. Shum ◽  
R. Derynk ◽  
R. Pytela ◽  
...  

Alveolar epithelial type II cells are essential for regenerating an intact alveolar barrier after destruction of type I cells in vivo. The first objective of these experimental studies was to develop an in vitro model to quantify alveolar epithelial cell wound repair. The second objective was to investigate mechanisms of alveolar epithelial cell wound healing by studying the effects of serum and transforming growth factor-alpha (TGF-alpha) on wound closure. Primary cultures of rat alveolar type II cells were prepared by standard methods and grown to form confluent monolayers in 48 h. Then a wound was made by denuding an area (mean initial area of 2.1 +/- 0.6 mm2) of the monolayer. Re-epithelialization of the denuded area over time in the presence or absence of serum was measured using quantitative measurements from time-lapse video microscopy. The half time of wound healing was significantly enhanced in the presence of serum compared with serum-free conditions (2.4 +/- 0.2 vs. 17.4 +/- 0.8 h, P < 0.001). We then tested the hypothesis that TGF-alpha is an important growth factor for stimulating wound repair of alveolar epithelial cells. Exogenous addition of TGF-alpha in serum-free medium resulted in a significantly more rapid wound closure, and, furthermore, the addition of a monoclonal antibody to TGF-alpha in the presence of serum significantly decreased fourfold the rate of wound closure. Measurement of internuclear cell distance confirmed that both cell motility and cell spreading were responsible for closure of the wound. These data demonstrate that 1) the mechanisms of alveolar cell repair can be studied in vitro and that 2) TGF-alpha is a potent growth factor that enhances in vitro alveolar epithelial cell wound closure.


2001 ◽  
Vol 21 (21) ◽  
pp. 7218-7230 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor β1 (TGF-β1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-β1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-β1-induced angiogenesis mainly by compromising cell survival. We established that TGF-β1 stimulated the expression of TGF-α mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-β1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-β1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-α alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-β1. We therefore propose that TGF-β1 promotes angiogenesis at least in part via the autocrine secretion of TGF-α, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.


1994 ◽  
Vol 14 (3) ◽  
pp. 1575-1581
Author(s):  
G J Pronk ◽  
A M de Vries-Smits ◽  
L Buday ◽  
J Downward ◽  
J A Maassen ◽  
...  

Shc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras. Analysis of Shc immunoprecipitates revealed that (i) both insulin and EGF treatment resulted in Shc tyrosine phosphorylation and (ii) Shc antibodies coimmunoprecipitated both Grb2 and mSOS after insulin and EGF treatment. The induction of tyrosine phosphorylation of Shc and the presence of Grb2 and mSOS in Shc immunoprecipitates followed similar time courses, with somewhat higher levels after EGF treatment. In mSOS immunoprecipitates, Shc could be detected as well. Furthermore, Shc immune complexes contained guanine nucleotide exchange activity toward p21ras in vitro. From these results, we conclude that after insulin and EGF treatment, Shc associates with both Grb2 and mSOS and therefore may mediate, at least in part, insulin- and EGF-induced activation of p21ras. In addition, we investigated whether the Grb2-mSOS complex associates with the insulin receptor or with insulin receptor substrate 1 (IRS1). Although we observed association of Grb2 with IRS1, we did not detect complex formation between mSOS and IRS1 in experiments in which the association of mSOS with Shc was readily detectable. Furthermore, whereas EGF treatment resulted in the association of mSOS with the EGF receptor, insulin treatment did not result in the association of mSOS with the insulin receptor. These results indicate that the association of Grb2-nSOS with Shc may be an important event in insulin-induced, mSOS-mediated activation of p21ras.


1995 ◽  
Vol 268 (2) ◽  
pp. L230-L238 ◽  
Author(s):  
D. J. Romberger ◽  
P. Pladsen ◽  
L. Claassen ◽  
M. Yoshida ◽  
J. D. Beckmann ◽  
...  

Fibronectin (Fn) is involved in the migration of epithelial cells in re-epithelialization of wounds. Epithelial cell-derived Fn is particularly potent as a chemotactic factor for bronchial epithelial cells (BECs) in vitro. Thus modulation of airway epithelial cell Fn may be a key aspect of airway repair. Insulin is both an important growth factor and known chemotactic factor for cultured BECs. We postulated that insulin may modulate Fn production of cultured BECs. We examined this hypothesis utilizing bovine BECs in culture with serum-free media with and without insulin. BECs grown in media without insulin released more Fn into culture supernatants and contained more Fn in cell layers than cells grown with insulin. Labeling of cells with [35S]methionine demonstrated an increase in new protein production and Fn mRNA expression was increased. Increased Fn in BEC cultures without insulin was associated with an increase in active transforming growth factor-beta (TGF-beta) release as measured by a standard bioassay. Increased BEC Fn in cultures without insulin was partially inhibited by exposure of cultures to TGF-beta antibody. Thus insulin appears to modulate BEC Fn production in vitro in part through a TGF-beta-dependent mechanism. Insulin may be involved in airway repair mechanisms through modulation of epithelial cell Fn production.


Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 517-528 ◽  
Author(s):  
Zhong Zhao ◽  
Damien Garbett ◽  
Julia L Hill ◽  
David J Gross

Cumulus cell–oocyte complexes (COCs), culturedin vitro, are competent for maturation and fertilization. Inclusion of epidermal growth factor (EGF) in the COC culture medium enhancesin vitromaturation and subsequent embryonic development. It has been shown that isolated COCs exposed to EGF respond with a prolonged and pulsatile release of Ca2+into the extra-cellular medium and that cumulus cells (CCs) of complexes exhibit both a slow rise in intracellular [Ca2+] ([Ca2+]i) and plasma membrane permeabilization in response to EGF. These unusual signaling responses were examined in isolated, cultured bovine CCs. Few individual CCs showed [Ca2+]iincreases; the lack of response was found to be due to decrease of expression of endogenous EGF receptors after dissociation. CCs transfected with a human EGF receptor–GFP fusion protein showed robust, prolonged, EGF-stimulated [Ca2+]ielevations characteristic of CC responses in intact COCs. Many CCs that responded to EGF stimulation with a [Ca2+]irise also released entrapped fura-2 dye at the peak of the [Ca2+]iresponse, suggesting that CC permeabilization and death follows activation of the EGF receptor. The [Ca2+]ielevation due to EGF stimulation and subsequent membrane permeabilization was shown to be mediated by the inositol triphosphate signaling pathway.


2006 ◽  
Vol 290 (5) ◽  
pp. F1202-F1212 ◽  
Author(s):  
Neil G. Docherty ◽  
Orfhlaith E. O'Sullivan ◽  
Declan A. Healy ◽  
Madeline Murphy ◽  
Amanda J. O'Neill ◽  
...  

Apoptosis and epithelial-mesenchymal transdifferentiation (EMT) occur in stressed tubular epithelial cells and contribute to renal fibrosis. Transforming growth factor (TGF)-β1 promotes these responses and we examined whether the processes were interdependent in vitro. Direct (caspase inhibition) and indirect [epidermal growth factor (EGF) receptor stimulation] strategies were used to block apoptosis during TGF-β1 stimulation, and the subsequent effect on EMT was assessed. HK-2 cells were exposed to TGF-β1 with or without preincubation with ZVAD-FMK (pan-caspase inhibitor) or concomitant treatment with EGF plus or minus preincubation with LY-294002 (PI3-kinase inhibitor). Cells were then assessed for apoptosis and proliferation by flow cytometry, crystal violet assay, and Western blotting. Markers of EMT were assessed by microscopy, immunofluorescence, real-time RT-PCR, Western blotting, PAI-1 reporter assay, and collagen gel contraction assay. TGF-β1 caused apoptosis and priming for staurosporine-induced apoptosis. This was blocked by ZVAD-FMK. However, ZVAD-FMK did not prevent EMT following TGF-β1 treatment. EGF inhibited apoptosis and facilitated TGF-β1 induction of EMT by increasing proliferation and accentuating E-cadherin loss. Additionally, EGF significantly enhanced TGF-β1-induced collagen I gel contraction. EGF increased Akt phosphorylation during EMT, and the prosurvival effect of this was confirmed using LY-294002, which reduced EGF-induced Akt phosphorylation and reversed its antiapoptotic and proproliferatory effects. TGF-β1 induces EMT independently of its proapoptotic effects. TGF-β1 and EGF together lead to EMT. EGF increases proliferation and resistance to apoptosis during EMT in a PI3-K Akt-dependent manner. In vivo, EGF receptor activation may assist in the selective survival of a transdifferentiated, profibrotic cell type.


2014 ◽  
Vol 307 (8) ◽  
pp. C745-C759 ◽  
Author(s):  
Priscilla Soulié ◽  
Alexandra Chassot ◽  
Thomas Ernandez ◽  
Roberto Montesano ◽  
Eric Féraille

Generation of branched tubes from an epithelial bud is a fundamental process in development. We hypothesized that induction of hyaluronan synthase (Has) and production of hyaluronan (HA) drives tubulogenesis in response to morphogenetic cytokines. Treatment of J3B1A mammary cells with transforming growth factor-β1 or renal MDCK and mCCD-N21 cells with hepatocyte growth factor induced strong and specific expression of Has2. Immunostaining revealed that HA was preferentially produced at the tips of growing tubules. Inhibition of HA production, either by 4-methylumbelliferone (4-MU) or by Has2 mRNA silencing, abrogated tubule formation. HA production by J3B1A and mCCD-N21 cells was associated with sustained activation of ERK and S6 phosphorylation. However, silencing of either CD44 or RHAMM (receptor for HA-mediated motility), the major HA receptors, by RNA interference, did not alter tubulogenesis, suggesting that this process is not receptor-mediated.


Sign in / Sign up

Export Citation Format

Share Document