Cellular and molecular mechanisms of renal peptide transport

1997 ◽  
Vol 273 (1) ◽  
pp. F1-F8 ◽  
Author(s):  
H. Daniel ◽  
M. Herget

Renal epithelial cells express membrane transport proteins capable of cellular uptake of a large variety of di- and tripeptides. These transporters contribute to renal amino acid homeostasis and the efficiency of conservation of amino acid nitrogen. In addition, these transporters appear to play a role in the renal handling of xenobiotics that possess a peptide backbone. Peptide carriers specialized in transport of di- and tripeptides have been identified in bacteria, fungi, plants, and epithelial cells of mammalian intestine and kidney. They appear to represent an archaic transporter family conserved throughout evolution. As a unique feature, these peptide carriers utilize a transmembrane-electrochemical proton gradient as the driving force that enables them to transport peptides against a concentration gradient. Renal peptide transporters have been characterized in terms of mechanism of transport function and substrate specificity in a number of model systems. Within the last two years, kidney peptide transporters of a variety of species have been identified by cloning techniques. In this review we discuss the physiological importance of renal peptide carriers and the transport mechanisms at the cellular level. We also present the recent advancements in functional expression of the cloned proteins that provide first insights into their molecular architecture and mode of operation.

2013 ◽  
Vol 305 (9) ◽  
pp. L604-L614 ◽  
Author(s):  
Maneesh Bhargava ◽  
Sanjoy Dey ◽  
Trisha Becker ◽  
Michael Steinbach ◽  
Baolin Wu ◽  
...  

In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized and are similar to changes in human acute respiratory distress syndrome. In the injured lung, alveolar type two (AT2) epithelial cells play a critical role in restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. We applied an unbiased systems-level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQ with tandem mass spectrometry. Of the 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene set enrichment analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A novel short time-series expression miner algorithm identified protein clusters with coherent changes during injury and repair. We concluded that coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.


Parasitology ◽  
1988 ◽  
Vol 96 (S1) ◽  
pp. S25-S44 ◽  
Author(s):  
I. Chopra

SUMMARYMany clinically useful antibacterial drugs have intracellular target sites. Therefore, in order to reach their targets, these compounds must be able to cross bacterial outer and cytoplasmic membranes. Considerable information is available on the mechanisms by which antibiotics cross bacterial membranes and, in many cases, it is now possible to define the molecular basis of their uptake. Passage of drugs across the outer membrane of Gram-negative bacteria can occur by diffusion through porin channels (e.g. β-lactams and tetracyclines), by facilitated diffusion using specific carriers (e.g. albomycin), or by self-promoted uptake (e.g. aminoglycosides and polymyxins). Transfer of antibiotics across the bacterial cytoplasmic membrane is usually mediated by active, carrier-mediated, transport systems normally operating to transport essential solutes into the cell. For example, the antibiotic streptozotocin bears sufficient structural resemblance toN-acetyl-D-glucosamine to be transported by the phosphoenolpyruvate : phosphotransferase system, and D-cycloserine is recognized by the D-alanine, proton motive force dependent transport system. However, in some cases (e.g. tetracycline) although carrier-mediated transport is implied by the observation that drug uptake is energy dependent, the nature of the membrane carrier(s) responsible is unknown. Knowledge acquired from studies on bacterial peptide transport has been successfully used to deliver (or smuggle) amino acid mimetics disguised as peptides into the bacterial cell. These amino acid mimetics, although often poorly transported in their own right, are frequently potent inhibitors of bacterial peptidoglycan or lipopolysaccharide synthesis once they have gained access to the interior of the cell.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2020 ◽  
Vol 16 (1) ◽  
pp. 85-89
Author(s):  
Mahesh M. Gouda ◽  
Ashwini Prabhu ◽  
Varsha Reddy S.V. ◽  
Rafa Jahan ◽  
Yashodhar P. Bhandary

Background: Bleomycin (BLM) is known to cause DNA damage in the Alveolar Epithelial Cells (AECs). It is reported that BLM is involved in the up-regulation of inflammatory molecules such as neutrophils, macrophages, chemokines and cytokines. The complex underlying mechanism for inflammation mediated progression of lung injury is still unclear. This investigation was designed to understand the molecular mechanisms associated with p53 mediated modulation of Plasminogen Activator Inhibitor-I (PAI-I) expression and its regulation by nano-curcumin formulation. Methods: A549 cells were treated with BLM to cause the cellular damage in vitro and commercially available nano-curcumin formulation was used as an intervention. Cytotoxic effect of nano-curcumin was analyzed using Methyl Thiazolyl Tetrazolium (MTT) assay. Protein expressions were analyzed using western blot to evaluate the p53 mediated changes in PAI-I expression. Results: Nano-curcumin showed cytotoxicity up to 88.5 % at a concentration of 20 μg/ml after 48 h of treatment. BLM exposure to the cells activated the phosphorylation of p53, which in turn increased PAII expression. Nano-curcumin treatment showed a protective role against phosphorylation of p53 and PAI-I expression, which in turn regulated the fibro-proliferative phase of injury induced by bleomycin. Conclusion: Nano-curcumin could be used as an effective intervention to regulate the severity of lung injury, apoptosis of AECs and fibro-proliferation during pulmonary injury.


Author(s):  
Sridhar Muthusami ◽  
Ilangovan Ramachandran ◽  
Sneha Krishnamoorthy ◽  
Yuvaraj Sambandam ◽  
Satish Ramalingam ◽  
...  

: The development of colorectal cancer (CRC) is a multi-stage process. The inflammation of the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease (CD) is often regarded as the initial trigger for the development of CRC. Many cytokines such as tumor necrosis factor alpha (TNF-α) and several interleukins (ILs) are known to exert proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers, including CRC through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown. Consolidating the published results and offering perspective solutions to circumvent CRC, the current review is focused on the role of miRNAs and their regulation in the development of CRC. We have also discussed the model systems adapted by researchers to delineate the role of miRNAs in inflammation-associated CRC.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 453
Author(s):  
Susana M. Chuva de Sousa Lopes ◽  
Marta S. Alexdottir ◽  
Gudrun Valdimarsdottir

Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.


2021 ◽  
Vol 22 (12) ◽  
pp. 6198
Author(s):  
Aleksandra A. Ageeva ◽  
Ilya M. Magin ◽  
Alexander B. Doktorov ◽  
Victor F. Plyusnin ◽  
Polina S. Kuznetsova ◽  
...  

The study of the L- and D-amino acid properties in proteins and peptides has attracted considerable attention in recent years, as the replacement of even one L-amino acid by its D-analogue due to aging of the body is resulted in a number of pathological conditions, including Alzheimer’s and Parkinson’s diseases. A recent trend is using short model systems to study the peculiarities of proteins with D-amino acids. In this report, the comparison of the excited states quenching of L- and D-tryptophan (Trp) in a model donor–acceptor dyad with (R)- and (S)-ketoprofen (KP-Trp) was carried out by photochemically induced dynamic nuclear polarization (CIDNP) and fluorescence spectroscopy. Quenching of the Trp excited states, which occurs via two mechanisms: prevailing resonance energy transfer (RET) and electron transfer (ET), indeed demonstrates some peculiarities for all three studied configurations of the dyad: (R,S)-, (S,R)-, and (S,S)-. Thus, the ET efficiency is identical for (S,R)- and (R,S)-enantiomers, while RET differs by 1.6 times. For (S,S)-, the CIDNP coefficient is almost an order of magnitude greater than for (R,S)- and (S,R)-. To understand the source of this difference, hyperpolarization of (S,S)-and (R,S)- has been calculated using theory involving the electron dipole–dipole interaction in the secular equation.


Author(s):  
Cesar A. López ◽  
Animesh Agarwal ◽  
Que N. Van ◽  
Andrew G. Stephen ◽  
S. Gnanakaran

AbstractSmall GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document