Gene transfer in the kidney

1999 ◽  
Vol 276 (1) ◽  
pp. F1-F9 ◽  
Author(s):  
Vicki Rubin Kelley ◽  
Vikas P. Sukhatme

Gene transfer approaches offer the promise of revolutionizing medicine. In this review, we focus on the current and future prospects of somatic gene transfer into the kidney. The advantages and disadvantages of current vector systems are described, and the ex vivo and in vitro approaches applicable to the kidney are reviewed. We discuss uses of gene transfer approaches to dissect the pathogenesis of kidney disease and the future directions and applications of gene transfer to combat kidney destruction.

2000 ◽  
Vol 164 (2) ◽  
pp. 103-118 ◽  
Author(s):  
D Stone ◽  
A David ◽  
F Bolognani ◽  
PR Lowenstein ◽  
MG Castro

The transfer of genetic material into endocrine cells and tissues, both in vitro and in vivo, has been identified as critical for the study of endocrine mechanisms and the future treatment of endocrine disorders. Classical methods of gene transfer, such as transfection, are inefficient and limited mainly to delivery into actively proliferating cells in vitro. The development of viral vector gene delivery systems is beginning to circumvent these initial setbacks. Several kinds of viruses, including retrovirus, adenovirus, adeno-associated virus, and herpes simplex virus, have been manipulated for use in gene transfer and gene therapy applications. As different viral vector systems have their own unique advantages and disadvantages, they each have applications for which they are best suited. This review will discuss viral vector systems that have been used for gene transfer into the endocrine system, and recent developments in viral vector technology that may improve their use for endocrine applications - chimeric vectors, viral vector targeting and transcriptional regulation of transgene expression.


1997 ◽  
Vol 71 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Howard J. Federoff ◽  
Andrew Brooks ◽  
Bashkar Muhkerjee ◽  
Timothy Corden

Aquaculture ◽  
2013 ◽  
Vol 388-391 ◽  
pp. 60-69 ◽  
Author(s):  
Iciar Muñoz ◽  
Silvia Zanuy ◽  
María José Mazón ◽  
Manuel Carrillo ◽  
Ana Gómez

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5547
Author(s):  
Carlos F. G. C. Geraldes

Molecular imaging has rapidly developed to answer the need of image contrast in medical diagnostic imaging to go beyond morphological information to include functional differences in imaged tissues at the cellular and molecular levels. Vibrational (infrared (IR) and Raman) imaging has rapidly emerged among the molecular imaging modalities available, due to its label-free combination of high spatial resolution with chemical specificity. This article presents the physical basis of vibrational spectroscopy and imaging, followed by illustration of their preclinical in vitro applications in body fluids and cells, ex vivo tissues and in vivo small animals and ending with a brief discussion of their clinical translation. After comparing the advantages and disadvantages of IR/Raman imaging with the other main modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography/single-photon emission-computed tomography (PET/SPECT), ultrasound (US) and photoacoustic imaging (PAI), the design of multimodal probes combining vibrational imaging with other modalities is discussed, illustrated by some preclinical proof-of-concept examples.


1999 ◽  
Vol 832 (1-2) ◽  
pp. 136-144 ◽  
Author(s):  
Ronald L Klein ◽  
Robert K McNamara ◽  
Michael A King ◽  
Robert H Lenox ◽  
Nicholas Muzyczka ◽  
...  

1997 ◽  
Vol 134 (1-2) ◽  
pp. 41
Author(s):  
F. Emmanuel ◽  
P. Benoît ◽  
J.M. Caillaud ◽  
L. Bassinet ◽  
I. Viry ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3249-3249
Author(s):  
Barbara Cassani ◽  
Grazia Andolfi ◽  
Massimiliano Mirolo ◽  
Luca Biasco ◽  
Alessandra Recchia ◽  
...  

Abstract Gene transfer into hematopoietic stem/progenitor cells (HSC) by gammaretroviral vectors is an effective treatment for patients affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA)-deficiency. Recent studied have indicated that gammaretroviral vectors integrate in a non-random fashion in their host genome, but there is still limited information on the distribution of retroviral insertion sites (RIS) in human long-term reconstituting HSC following therapeutic gene transfer. We performed a genome-wide analysis of RIS in transduced bone marrow-derived CD34+ cells before transplantation (in vitro) and in hematopoietic cell subsets (ex vivo) from five ADA-SCID patients treated with gene therapy combined to low-dose busulfan. Vector-genome junctions were cloned by inverse or linker-mediated PCR, sequenced, mapped onto the human genome, and compared to a library of randomly cloned human genome fragments or to the expected distribution for the NCBI annotation. Both in vitro (n=212) and ex vivo (n=496) RIS showed a non-random distribution, with strong preference for a 5-kb window around transcription start sites (23.6% and 28.8%, respectively) and for gene-dense regions. Integrations occurring inside the transcribed portion of a RefSeq genes were more represented in vitro than ex vivo (50.9 vs 41.3%), while RIS <30kb upstream from the start site were more frequent in the ex vivo sample (25.6% vs 19.4%). Among recurrently hit loci (n=50), LMO2 was the most represented, with one integration cloned from pre-infusion CD34+ cells and five from post-gene therapy samples (2 in granulocytes, 3 in T cells). Clone-specific Q-PCR showed no in vivo expansion of LMO2-carrying clones while LMO2 gene overexpression at the bulk level was excluded by RT-PCR. Gene expression profiling revealed a preference for integration into genes transcriptionally active in CD34+ cells at the time of transduction as well as genes expressed in T cells. Functional clustering analysis of genes hit by retroviral vectors in pre- and post-transplant cells showed no in vivo skewing towards genes controlling self-renewal or survival of HSC (i.e. cell cycle, transcription, signal transduction). Clonal analysis of long-term repopulating cells (>=6 months) revealed a high number of distinct RIS (range 42–121) in the T-cell compartment, in agreement with the complexity of the T-cell repertoire, while fewer RIS were retrieved from granulocytes. The presence of shared integrants among multiple lineages confirmed that the gene transfer protocol was adequate to allow stable engraftment of multipotent HSC. Taken together, our data show that transplantation of ADA-transduced HSC does not result in skewing or expansion of malignant clones in vivo, despite the occurrence of insertions near potentially oncogenic genomic sites. These results, combined to the relatively long-term follow-up of patients, indicate that retroviral-mediated gene transfer for ADA-SCID has a favorable safety profile.


1995 ◽  
Vol 92 (13) ◽  
pp. 6185-6189 ◽  
Author(s):  
S. J. Corin ◽  
L. K. Levitt ◽  
J. V. O'Mahoney ◽  
J. E. Joya ◽  
E. C. Hardeman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document