Relation between morphological and physiological events in lung studied by rapid freezing

1962 ◽  
Vol 17 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Norman C. Staub ◽  
Winnifred F. Storey

We have applied the method of rapid freezing to the living ventilated lung in the open thorax of cats. Studies in isolated lung lobes showed freezing to depths of 0.1 cm in less than frac12 sec, 0.2 cm in 2 sec. Theoretical calculations based on an idealized model and the experimental data are compared. At these fast rates, ice crystal formation is submicronic and light microscopy shows good histological preservation. We discuss the problem of whether the lung tissues respond to rapid cooling by any detectible alterations of structural form. Indirect evidence from our own and other studies suggests that there is little or no reaction, although further work along this line is necessary. We believe this procedure has important uses as a way to relate structural and functional details within the lung. Submitted on September 5, 1961

Author(s):  
William P. Sharp ◽  
Robert W. Roberson

The aim of ultrastructural investigation is to analyze cell architecture and relate a functional role(s) to cell components. It is known that aqueous chemical fixation requires seconds to minutes to penetrate and stabilize cell structure which may result in structural artifacts. The use of ultralow temperatures to fix and prepare specimens, however, leads to a much improved preservation of the cell’s living state. A critical limitation of conventional cryofixation methods (i.e., propane-jet freezing, cold-metal slamming, plunge-freezing) is that only a 10 to 40 μm thick surface layer of cells can be frozen without distorting ice crystal formation. This problem can be allayed by freezing samples under about 2100 bar of hydrostatic pressure which suppresses the formation of ice nuclei and their rate of growth. Thus, 0.6 mm thick samples with a total volume of 1 mm3 can be frozen without ice crystal damage. The purpose of this study is to describe the cellular details and identify potential artifacts in root tissue of barley (Hordeum vulgari L.) and leaf tissue of brome grass (Bromus mollis L.) fixed and prepared by high-pressure freezing (HPF) and freeze substitution (FS) techniques.


Author(s):  
I. Taylor ◽  
P. Ingram ◽  
J.R. Sommer

In studying quick-frozen single intact skeletal muscle fibers for structural and microchemical alterations that occur milliseconds, and fractions thereof, after electrical stimulation, we have developed a method to compare, directly, ice crystal formation in freeze-substituted thin sections adjacent to all, and beneath the last, freeze-dried cryosections. We have observed images in the cryosections that to our knowledge have not been published heretofore (Figs.1-4). The main features are that isolated, sometimes large regions of the sections appear hazy and have much less contrast than adjacent regions. Sometimes within the hazy regions there are smaller areas that appear crinkled and have much more contrast. We have also observed that while the hazy areas remain still, the regions of higher contrast visibly contract in the beam, often causing tears in the sections that are clearly not caused by ice crystals (Fig.3, arrows).


2016 ◽  
Vol 104 (8) ◽  
Author(s):  
Junhua Luo ◽  
Chunlei Wu ◽  
Li Jiang ◽  
Long He

Abstract:The cross sections for (n,x) reactions on samarium isotopes were measured at (d-T) neutron energies of 13.5 and 14.8 MeV with the activation technique. Samples were activated along with Nb and Al monitor foils to determine the incident neutron flux. Theoretical calculations of excitation functions were performed using the nuclear model codes TALYS-1.6 and EMPIRE-3.2 Malta with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with experimental data found in the literature. At neutron energies 13.5 and 14.8 MeV, the cross sections of the


1990 ◽  
Vol 68 (1) ◽  
pp. 104-110 ◽  
Author(s):  
B. Plenkiewicz ◽  
P. Plenkiewicz ◽  
J.-P. Jay-Gerin

Our earlier pseudopotential calculations on electrons colliding with argon and krypton are extended to consider the elastic electron–helium scattering system. In this paper, we present detailed results for phase shifts, differential, total, and momentum-transfer cross sections for this system for incident electron energies in the range from 0 to 20 eV. These agree very well with existing experimental data and with other theoretical calculations.


Author(s):  
Harsh Vinayak ◽  
Donald R. Houser

Abstract This paper deals with the experimental study of dynamic transmission error of a gear pair. Two aspects of the experiment are discussed : 1) design of the test facility and data acquisition system and 2) comparison of transmission error and load distribution with experimental data. Several gears were tested under varying misalignments. A prediction program LDP (Load distribution Program) was used for theoretical calculations of dynamic transmission error.


2020 ◽  
pp. 38-44
Author(s):  
I.Y. Shirali ◽  
◽  
V.Yu. Tsivilitsin ◽  
İ.B. Bondar ◽  
R.A. Hasanov ◽  
...  

The structure of two types of magnetic valve is offered and the calculation methods of their pull-in force developed as well. The formulas of calculation of pull-in force in the main area of valves’ power characteristics are obtained. Experimental data are in alignment with theoretical calculations. Power characteristics of offered structures of magnetic valves may be changed in terms of the offered structural execution of magnetic valves. Experimental test of obtained formulas has been carried out. The ways of changing the power characteristics of magnetic valves in accordance with the requirements of certain applications are presented. The structures of magnetic reversing valves for drilling tools used in well drilling in various oil-gas bearing areas of SOCAR have been developed.


Sign in / Sign up

Export Citation Format

Share Document