Pulmonary vascular compliance and viscoelasticity

1986 ◽  
Vol 61 (5) ◽  
pp. 1802-1814 ◽  
Author(s):  
J. H. Linehan ◽  
C. A. Dawson ◽  
D. A. Rickaby ◽  
T. A. Bronikowski

When dog lung lobes were perfused at constant arterial inflow rate, occlusion of the venous outflow (VO) produced a rapid jump in venous pressure (Pv) followed by a slower rise in both arterial pressure (Pa) and Pv. During the slow rise Pa(t) and Pv(t) tended to converge and become concave upward as the volume of blood in the lungs increased. We compared the dynamic vascular volume vs. pressure curves obtained after VO with the static volume vs. pressure curves obtained by dye dilution. The slope of the static curve (the static compliance, Cst) was always larger than the slope of the dynamic curve (the dynamic compliance, Cdyn). In addition, the Cdyn decreased with increasing blood flow rate. When venous occlusion (VO) was followed after a short time interval by arterial occlusion (AO) such that the lobe was isovolumic, both Pa and Pv fell with time to a level that was below either pressure at the instant of AO. In an attempt to explain these observations a compartmental model was constructed in which the hemodynamic resistance and vascular compliance were volume dependent and the vessel walls were viscoelastic. These features of the model could account for the convergence and upward concavity of the Pa and Pv curves after VO and the pressure relaxation in the isovolumic state after AO, respectively. According to the model analysis, the difference between Cst and Cdyn and the flow dependence of Cdyn are due to wall viscosity and volume dependence of compliance, respectively. Model analysis also suggested ways of evaluating changes in the viscoelasticity of the lobar vascular bed. Hypoxic vasoconstriction that increased total vascular resistance also decreased Cst and Cdyn and appeared to increase the vessel wall viscosity.

1995 ◽  
Vol 34 (7) ◽  
pp. 1512-1524 ◽  
Author(s):  
Thomas J. Kleespies

Abstract Radiometric observations in the 3.9-µm region have been used by a number of investigators for the determination of cloud parameters or sea surface temperature at night. Only a few attempts have been made to perform quantitative assessments of cloud and surface properties during the daytime because of the inability to distinguish between the thermal and solar components of the satellite-sensed radiances. This paper presents a new method of separating the thermal and solar components of upwelling 3.9-µm radiances. Two collocated satellite observations are made under conditions where the solar illumination angle changes but the thermal structure of the cloud and atmosphere, as well as the cloud microphysics change very little. These conditions can easily be met by observing the same cloud from geosynchoronous orbit over a short time interval during the morning hours. When the radiances are differenced under these constraints, the thermal components cancel, and the difference in the radiances is simply the difference in the solar component. With a few simplifying assumptions, a cloud microphysical property, specifically effective radius, can be inferred. This parameter is of particular importance to both climate modeling and global change studies. The methodology developed in this paper is applied to data from the Visible-Infrared Spin Scan Radiometer Atmospheric Sounder onboard the GOES-7 spacecraft for a period in August 1992.


1987 ◽  
Vol 63 (2) ◽  
pp. 778-784 ◽  
Author(s):  
D. A. Rickaby ◽  
C. A. Dawson ◽  
J. H. Linehan ◽  
T. A. Bronikowski

To gain insight into the changes occurring in alveolar vessels when alveolar pressure exceeds venous pressure at the downstream end of the alveolar vessels (zone 2), we compared the uptake of serotonin and the extravascular volume accessible to 3HOH (Qev) under zone 2 and 3 conditions in isolated dog lung lobes. We also examined the influence of occluding some of the small pulmonary arteries with 58- to 548-micron-diam beads on the serotonin uptake and Qev. We found that, with the bead embolization, both the serotonin uptake and the Qev were reduced, whereas the change from zone 3 to 2 reduced serotonin uptake but did not change Qev. A plausible explanation for these observations is that the beads occluded vessels that were relatively large compared with those in which significant transvascular 3HOH exchange and serotonin uptake take place. Perfusion ceased in the collection of capillaries normally served by the obstructed arteries. Thus the extravascular water and the serotonin uptake sites downstream from the obstructions were not accessible to the indicators during the short time interval of the indicator passage through the lung. On the other hand, the change from zone 3 to zone 2 resulted in the collapse of small individual capillary segments within the alveolar vessel bed. Since the serotonin does not readily diffuse from the vessels through the tissue, it could not reach the endothelial cells of the collapsed capillaries. However, since the distances for diffusion between collapsed capillaries and neighboring perfused capillaries were small, the more highly diffusible 3HOH had access to the same Qev under both zone 2 and 3 conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 238 (6) ◽  
pp. G478-G484
Author(s):  
P. R. Kvietys ◽  
T. Miller ◽  
D. N. Granger

In a denervated autoperfused dog colon preparation, arterial perfusion pressure, venous outflow pressure, blood flow, and arteriovenous O2 difference were measured during graded arterial pressure alterations, arterial occlusion, venous pressure elevation, venous occlusion, and local intra-arterial infusion of adenosine. As perfusion pressure was reduced from 100 to 30 mmHg, colonic blood flow decreased and arteriovenous O2 difference increased. Although blood flow was not autoregulated O2 delivery was maintained within 10% of control between 70 to 100 mmHg and then decreased with further reduction in perfusion pressure. Arterial occlusion (15, 30, and 60 s) resulted in a postocclusion reactive hyperemia; the magnitude of the hyperemia was directly related to the duration of occlusion. Venous occlusion resulted in a postocclusion reactive hypoemia. Elevation of venous pressure from 0 to 20 mmHg increased vascular resistance, O2 extraction, and the capillary filtration coefficient, but decreased O2 delivery. Infusion of adenosine decreased vascular resistance and O2 extraction, but increased O2 delivery. These data suggest that both metabolic and myogenic mechanisms are involved in the control of colonic blood flow and oxygenation.


1984 ◽  
Vol 246 (6) ◽  
pp. H880-H885
Author(s):  
R. J. Korthuis ◽  
D. N. Granger ◽  
A. E. Taylor

Venous (Pc,vo) and arterial occlusion capillary pressures were simultaneously compared with isogravimetric capillary pressure (Pci) in isolated rat hindquarters and canine gracilis muscles perfused with blood or an artificial plasma. Arterial or venous pressure transients following rapid occlusion of arterial inflow or venous outflow, respectively, were analyzed for the inflection point between rapid and slow components. This transition point was assumed to represent the beginning of discharge of blood stored in (arterial occlusion) or the addition of blood to (venous occlusion) skeletal muscle microvessels and was defined as the effective capillary pressure. In all preparations, Pc,vo was identical to Pci. Arterial occlusion pressures were the same as Pci and Pc,vo in artificial plasma-perfused preparations but were significantly greater (P less than 0.01) than Pci and Pc,vo obtained in blood-perfused preparations. This inequality between arterial occlusion pressure and Pci may be related to a critical closure of small precapillary vessels or the non-Newtonian behavior of blood. In addition, venous occlusion pressures were highly correlated (r = 0.95, P less than 0.01) to calculated capillary pressures obtained following simultaneous equivalent elevations of arterial and venous pressure. These results indicate that the primary sites of vascular compliance and fluid filtration reside at or very near one another in the skeletal muscle microcirculation and that the more easily determined venous occlusion capillary pressure is an adequate measure of the effective capillary pressure in skeletal muscle.


1976 ◽  
Vol 50 (1) ◽  
pp. 43-49
Author(s):  
W. F. M. Wallace ◽  
J. P. Jamison

1. Plethysmographs containing the hand plus forearm were used to measure blood flow in patients with a surgically created arteriovenous fistula in one forearm. 2. Apparent flow rate was stable over a limited range of collecting pressures; the absolute value of these pressures varied from patient to patient. 3. After arterial occlusion, blood flow increased by a similar amount on the normal side and on the side with the fistula. 4. Occlusion of fistular flow produced no significant change in heart rate. 5. Fistular flow, estimated as the difference between flow on the two sides, averaged 525 ml/min in seventeen patients.


Author(s):  
O. S. Galinina ◽  
S. D. Andreev ◽  
A. M. Tyurlikov

Introduction: Machine-to-machine communication assumes data transmission from various wireless devices and attracts attention of cellular operators. In this regard, it is crucial to recognize and control overload situations when a large number of such devices access the network over a short time interval.Purpose:Analysis of the radio network overload at the initial network entry stage in a machine-to-machine communication system.Results: A system is considered that features multiple smart meters, which may report alarms and autonomously collect energy consumption information. An analytical approach is proposed to study the operation of a large number of devices in such a system as well as model the settings of the random-access protocol in a cellular network and overload control mechanisms with respect to the access success probability, network access latency, and device power consumption. A comparison between the obtained analytical results and simulation data is also offered. 


1987 ◽  
Author(s):  
I Keber ◽  
K Potisk ◽  
D Keber ◽  
M Stegnar ◽  
N Vene

To determine the origin of tissue plasminogen activator (t-PA) release during physical activity, we studied the separate and combined effects of venous occlusion and acute physical activity on t-PA release in arm and leg. In 15 healthy volunteers 20 min venous occlusions of arm and leg were performed simultaneously before physical activity ( maximal stress testing on treadmill)(occlusion I), immediately after physical activity and 45 min later (occlusion II). Blood samples were drawn from unoccluded arm before occlusion and after physical activity, and from occluded arm and leg after occlusion. Fibrinolytic activity was measured by euglobulin clot lysis time (ECLT) and t-PA activity assay. The amount of released t-PA during different stimuli (fibrinolytic potential) was calculated as the difference between post- and prestimulation fibrinolytic activity. Before physical activity there was a great increase in fibrinolytic activity due to t-PA in the occluded arm but no increase in the occluded leg. Physical activity itself caused a similar increase of systemic fibrinolytic activity as arm occlusion locally. After physical activity arm occlusion evoked equally good response than before it. Fibrinolytic activity during leg occlusion behaved differently: there was an increase in t-PA activity in the occluded leg which persisted one hour after physical activity, when systemic fibrinolytic activity already fell to initial level.These results demonstrated that walking and running triggered t-PA release from the leg vessels. Since leg occlusion was not a stimulus for t-PA release, it served only as a method to demonstrate the effect of physical activity.


2021 ◽  
Vol 13 (14) ◽  
pp. 2739
Author(s):  
Huizhong Zhu ◽  
Jun Li ◽  
Longjiang Tang ◽  
Maorong Ge ◽  
Aigong Xu

Although ionosphere-free (IF) combination is usually employed in long-range precise positioning, in order to employ the knowledge of the spatiotemporal ionospheric delays variations and avoid the difficulty in choosing the IF combinations in case of triple-frequency data processing, using uncombined observations with proper ionospheric constraints is more beneficial. Yet, determining the appropriate power spectral density (PSD) of ionospheric delays is one of the most important issues in the uncombined processing, as the empirical methods cannot consider the actual ionosphere activities. The ionospheric delays derived from actual dual-frequency phase observations contain not only the real-time ionospheric delays variations, but also the observation noise which could be much larger than ionospheric delays changes over a very short time interval, so that the statistics of the ionospheric delays cannot be retrieved properly. Fortunately, the ionospheric delays variations and the observation noise behave in different ways, i.e., can be represented by random-walk and white noise process, respectively, so that they can be separated statistically. In this paper, we proposed an approach to determine the PSD of ionospheric delays for each satellite in real-time by denoising the ionospheric delay observations. Based on the relationship between the PSD, observation noise and the ionospheric observations, several aspects impacting the PSD calculation are investigated numerically and the optimal values are suggested. The proposed approach with the suggested optimal parameters is applied to the processing of three long-range baselines of 103 km, 175 km and 200 km with triple-frequency BDS data in both static and kinematic mode. The improvement in the first ambiguity fixing time (FAFT), the positioning accuracy and the estimated ionospheric delays are analysed and compared with that using empirical PSD. The results show that the FAFT can be shortened by at least 8% compared with using a unique empirical PSD for all satellites although it is even fine-tuned according to the actual observations and improved by 34% compared with that using PSD derived from ionospheric delay observations without denoising. Finally, the positioning performance of BDS three-frequency observations shows that the averaged FAFT is 226 s and 270 s, and the positioning accuracies after ambiguity fixing are 1 cm, 1 cm and 3 cm in the East, North and Up directions for static and 3 cm, 3 cm and 6 cm for kinematic mode, respectively.


2021 ◽  
pp. 1-51
Author(s):  
Yan Yin Phoi ◽  
Michelle Rogers ◽  
Maxine P. Bonham ◽  
Jillian Dorrian ◽  
Alison M. Coates

Abstract Circadian rhythms, metabolic processes, and dietary intake are inextricably linked. Timing of food intake is a modifiable temporal cue for the circadian system and may be influenced by numerous factors, including individual chronotype—an indicator of an individual’s circadian rhythm in relation to the light-dark cycle. This scoping review examines temporal patterns of eating across chronotypes and assesses tools that have been used to collect data on temporal patterns of eating and chronotype. A systematic search identified thirty-six studies in which aspects of temporal patterns of eating including meal timings; meal skipping; energy distribution across the day; meal frequency; time interval between meals, or meals and wake/sleep times; midpoint of food/energy intake; meal regularity; and duration of eating window were presented in relation to chronotype. Findings indicate that compared to morning chronotypes, evening chronotypes tend to skip meals more frequently, have later mealtimes, and distribute greater energy intake towards later times of the day. More studies should explore the difference in meal regularity and duration of eating window amongst chronotypes. Currently, tools used in collecting data on chronotype and temporal patterns of eating are varied, limiting the direct comparison of findings between studies. Development of a standardised assessment tool will allow future studies to confidently compare findings to inform the development and assessment of guidelines that provide recommendations on temporal patterns of eating for optimal health.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Christiane Schön ◽  
Claudia Reule ◽  
Katharina Knaub ◽  
Antje Micka ◽  
Manfred Wilhelm ◽  
...  

Abstract Background The assessment of improvement or maintenance of joint health in healthy subjects is a great challenge. The aim of the study was the evaluation of a joint stress test to assess joint discomfort in subjects with activity-related knee joint discomfort (ArJD). Results Forty-five subjects were recruited to perform the single-leg-step-down (SLSD) test (15 subjects per group). Subjects with ArJD of the knee (age 22–62 years) were compared to healthy subjects (age 24–59 years) with no knee joint discomfort during daily life sporting activity and to subjects with mild-to-moderate osteoarthritis of the knee joint (OA, Kellgren score 2–3, age 42–64 years). The subjects performed the SLSD test with two different protocols: (I) standardization for knee joint discomfort; (II) standardization for load on the knee joint. In addition, range of motion (ROM), reach test, acute pain at rest and after a single-leg squat and knee injury, and osteoarthritis outcome score (KOOS) were assessed. In OA and ArJD subjects, knee joint discomfort could be reproducibly induced in a short time interval of less than 10 min (200 steps). In healthy subjects, no pain was recorded. A clear differentiation between study groups was observed with the SLSD test (maximal step number) as well as KOOS questionnaire, ROM, and reach test. In addition, a moderate to good intra-class correlation was shown for the investigated outcomes. Conclusions These results suggest the SLSD test is a reliable tool for the assessment of knee joint health function in ArJD and OA subjects to study the improvements in their activities. Further, this model can be used as a stress model in intervention studies to study the impact of stress on knee joint health function.


Sign in / Sign up

Export Citation Format

Share Document