Effect of intravenous catalase on the pulmonary vascular response to endotoxemia in goats

1988 ◽  
Vol 64 (2) ◽  
pp. 697-704 ◽  
Author(s):  
R. J. Maunder ◽  
R. K. Winn ◽  
J. M. Gleisner ◽  
J. Hildebrandt ◽  
J. M. Harlan

Neutrophils have been implicated in the pathogenesis of acute lung injury associated with clinical and experimental sepsis. Data from in vitro systems and experimental animals have suggested that neutrophil-derived oxidants, particularly H2O2, may be primarily responsible for endothelial damage, vasoconstriction, and lung edema. With the use of endotoxin infusion as an in vivo model of sepsis we tested the hypothesis that pretreatment with catalase, a peroxide scavenger, would ameliorate the resultant changes in pulmonary vasoconstriction and lung fluid balance. Paired experiments were performed in 16 goats with chronic lung lymph fistulas. One group of animals (n = 7) received endotoxin first alone and then again, several days later, after pretreatment with Ficoll-linked catalase. As a control, identical experiments were performed in a separate group (n = 6) with Ficoll-linked albumin substituted for Ficoll-catalase. A third group (n = 3) was given endotoxin alone and then again during a continuous infusion of catalase. Plasma and lymph levels of catalase were comparable to or exceeded those previously shown to be completely protective in isolated perfused lung preparations and in vitro systems. Endotoxin caused neutropenia, pulmonary arterial hypertension, decreased cardiac output, and increases in lymph flow to approximately three times base line, with a return of all variables toward control values by 6 h. Catalase pretreatment produced no significant differences in any of these variables. These experiments do not support a role for H2O2 as a mediator of acute lung injury due to endotoxemia.

Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 684-693 ◽  
Author(s):  
Bernhard Nieswandt ◽  
Bernd Echtenacher ◽  
Frank-Peter Wachs ◽  
Josef Schröder ◽  
J. Engelbert Gessner ◽  
...  

Shock is frequently accompanied by thrombocytopenia. To investigate the pathogenic role of platelets in shock, we examined the in vivo effects of monoclonal antibodies (MoAbs) against mouse platelet membrane proteins. Injection of the platelet-specific MoAb MWReg30 to the fibrinogen receptor (gpIIb/IIIa) rendered mice severely hypothermic within minutes. Isotype-matched control antibodies, even if they also recognized platelet surface antigens, did not induce comparable signs. MWReg30 induced early signs of acute lung injury with increased cellularity in the lung interstitium and rapid engorgement of alveolar septal vessels. Despite this in vivo activity, MWReg30 inhibited rather than stimulated platelet aggregation in vitro. MWReg30-binding to platelets led to phosphorylation of gpIIIa, but did not induce morphological signs of platelet activation. The MWReg30-induced reaction was abolished after treatment with MoAbs 2.4G2 to FcγRII/III and was absent in FcγRIII-deficient mice, clearly demonstrating the requirement for FcγRIII on involved leukocytes. Simultaneous administration of tumor necrosis factor exacerbated, whereas a tolerizing regimen of tumor necrosis factor or bacterial lipopolysaccharide completely prevented the reaction. These data suggest that platelet surface-deposited MWReg30-immune complexes lead to an acute Fc-mediated reaction with pulmonary congestion and life-threatening potential that could serve as an in vivo model of acute lung injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Qiong He ◽  
Can-Can Zhou ◽  
Jiu-Ling Deng ◽  
Liang Wang ◽  
Wan-Sheng Chen

Acute lung injury (ALI) is a common life-threatening lung disease, which is mostly associated with severe inflammatory responses and oxidative stress. Tanreqing injection (TRQ), a Chinese patent medicine, is clinically used for respiratory-related diseases. However, the effects and action mechanism of TRQ on ALI are still unclear. Recently, STING as a cytoplasmic DNA sensor has been found to be related to the progress of ALI. Here, we showed that TRQ significantly inhibited LPS-induced lung histological change, lung edema, and inflammatory cell infiltration. Moreover, TRQ markedly reduced inflammatory mediators release (TNF-α, IL-6, IL-1β, and IFN-β). Furthermore, TRQ also alleviated oxidative stress, manifested by increased SOD and GSH activities and decreased 4-HNE, MDA, LDH, and ROS activities. In addition, we further found that TRQ significantly prevented cGAS, STING, P-TBK, P-P65, P-IRF3, and P-IκBα expression in ALI mice. And we also confirmed that TRQ could inhibit mtDNA release and suppress signaling pathway mediated by STING in vitro. Importantly, the addition of STING agonist DMXAA dramatically abolished the protective effects of TRQ. Taken together, this study indicated that TRQ alleviated LPS-induced ALI and inhibited inflammatory responses and oxidative stress through STING signaling pathway.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 684-693 ◽  
Author(s):  
Bernhard Nieswandt ◽  
Bernd Echtenacher ◽  
Frank-Peter Wachs ◽  
Josef Schröder ◽  
J. Engelbert Gessner ◽  
...  

Abstract Shock is frequently accompanied by thrombocytopenia. To investigate the pathogenic role of platelets in shock, we examined the in vivo effects of monoclonal antibodies (MoAbs) against mouse platelet membrane proteins. Injection of the platelet-specific MoAb MWReg30 to the fibrinogen receptor (gpIIb/IIIa) rendered mice severely hypothermic within minutes. Isotype-matched control antibodies, even if they also recognized platelet surface antigens, did not induce comparable signs. MWReg30 induced early signs of acute lung injury with increased cellularity in the lung interstitium and rapid engorgement of alveolar septal vessels. Despite this in vivo activity, MWReg30 inhibited rather than stimulated platelet aggregation in vitro. MWReg30-binding to platelets led to phosphorylation of gpIIIa, but did not induce morphological signs of platelet activation. The MWReg30-induced reaction was abolished after treatment with MoAbs 2.4G2 to FcγRII/III and was absent in FcγRIII-deficient mice, clearly demonstrating the requirement for FcγRIII on involved leukocytes. Simultaneous administration of tumor necrosis factor exacerbated, whereas a tolerizing regimen of tumor necrosis factor or bacterial lipopolysaccharide completely prevented the reaction. These data suggest that platelet surface-deposited MWReg30-immune complexes lead to an acute Fc-mediated reaction with pulmonary congestion and life-threatening potential that could serve as an in vivo model of acute lung injury.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 832-832 ◽  
Author(s):  
Brian R. Curtis ◽  
Marguerite R. Kelher ◽  
Nathan J.D. McLaughlin ◽  
Patricia M. Kopko ◽  
Christopher C. Silliman

Abstract Transfusion related acute lung injury (TRALI) is a serious complication of blood administration. TRALI is neutrophil (PMN)-mediated and the pathogenesis is due to the infusion of antibodies directed against specific HLA (class I or II) or granulocyte antigens and may also be the result of two events: 1) a predisposing clinical condition of the patient resulting in PMN pulmonary sequestration followed by 2) the infusion of biologic response modifiers (BRMs), e.g. lipids from stored blood. These BRMs prime PMNs in vitro and cause PMN cytotoxicity in vivo resulting in endothelial damage, capillary leak and TRALI. We hypothesize that antibodies directed against specific PMN antigens cause rapid PMN priming and cytotoxicity in a two-event model, specific to the antigen they recognize. PMNs were isolated from healthy donors and 5b− (HNA-3a−) donors by standard techniques and were incubated for 3 min with 10% fresh plasma (FP) from healthy donors, plasma from three donors who had antibodies against HNA-3a and were implicated in TRALI, or 10% immune complexes (ICs) made from sera (+ control). Selected wells had Fab′2 fragments against the Fc receptors (CD16, CD32 & CD64). The maximal rate of O2− production was measured as cytochrome c reduction at 550 nm. Priming is defined as augmentation of the fMLP-activated respiratory burst (Table 1). We used an in vitro model of TRALI (Wyman AJP Cell 283: C1592, 2002) in which Human plumonary microvascular endothelial cells (HMVECs) were grown to 90% confluence and incubated with buffer or endotoxin (LPS) [200 ng/ml] for 6 hours. HNA-3a+ PMNs were added ± Fab′2 fragments, allowed to settle, and incubated for 30 min with FP or HNA-3a+ plasma. The plates were forcibly decanted and the viable HMVECs per mm2 were counted (Table 2). HNA-3a+ plasma significantly primed the PMN oxidase as compared to FP-treated controls (Table 1). Pre-treatment of PMNs with Fab′2 inhibited IC priming but did not affect other groups, and HNA-3a+ plasma did not prime HNA-3a− PMNs (data not shown). HNA-3a+ plasma ± LPS without PMNs did not affect HMVEC viability (data not shown), and HMVECs activated with LPS caused widespread PMN adherence. HNA-3a+ plasma plus HNA-3a+ PMNs caused destruction of LPS-activated HMVECs that was partially inhibited by Fab′2 fragments (Table 2). We conclude that HNA-3a+ plasma rapidly, effectively, and specifically primes HNA3+ PMNs. HNA-3a+ plasma can also serve as the second event in a two-event model of PMN-mediated HMVEC damage. Thus, antibodies directed against specific granulocyte antigens and lipids from stored blood may cause TRALI through a common final pathway of PMN activation. HNA-3a+ (5b+) plasma priming of HNA-3a+ PMNs Pre-tx/Group Control ICs FFP Donor 1 Donor 2 Donor 3 Units=nmol O2−/min; †=P<0.05 versus FFP controls; *=p<0.05 versus ICs. Buffer 2.7±0.5 8.8±0.7† 2.5±0.4 5.7±1.8† 6.5±† 5.0±1.0† Fab′2 2.1±0.8 3.2±0.4* 3.6±0.9 3.8±0.7 4.6±1.5 4.0±1.0 HNA-3a+ (5b+) plasma causes PMN cytotoxicity Pre-tx/Group Control LPS/PMNs LPS/PMNs/FFP LPS/PMNs/5b plasma Units=viable HMVECs/mm2; †=p<0.05 versus Controls and LPS/PMNs/FFP; *=p<0.05 versus LPS/PMN/5b+ plasma. Buffer 245±1 234±8 229±9 151±7† Fab′2 no data no data 240±9 190±*


2021 ◽  
Vol 19 ◽  
pp. 205873922110205
Author(s):  
Zhengxu Chen ◽  
Xinyi Yang ◽  
Lu Zhang ◽  
Man Li ◽  
Lei Sun ◽  
...  

Objective: Celastrol is a compound extracted from a medicinal plant Tripterygium wilfordii which has a broad-spectrum anti-inflammatory effect in traditional medicine. However, the effect of celastrol on acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is still unknown. Methods: We reported that celastrol alleviated LPS-induced acute lung injury by H&E staining, MPO activity and the expression of cytokines in broncho-alveolar lavage fluid. The effect of celastrol on bone marrow-derived macrophages (BMDMs) after LPS treatment was measured by ELISA and Western blotting. Results: In vivo, celastrol reduced the LPS-induced lung edema and MPO activity of lung tissue. Furthermore, the production of inflammatory cytokines IL-6, TNF-α, and KC in bronchoalveolar lavage was reduced. In vitro, upon treatment of LPS, celastrol dose-dependently inhibited the expression of iNOS in BMDMs. Meanwhile, the expression of IL-6, TNF-α, and KC in BMDMs were also inhibited by celastrol treatment. Furthermore, we found that celastrol attenuated the phosphorylation of p38 MAPK and MK2, and inhibited the interaction between p38 MAPK and MK2. Conclusion: Our data indicate that celastrol has an anti-inflammatory effect on LPS-induced inflammatory response in vivo and in vitro, suggesting celastrol is a promising compound for the treatment of ALI and ARDS.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Runmin Zhao ◽  
Bingxia Wang ◽  
Dasheng Wang ◽  
Benhe Wu ◽  
Peiyu Ji ◽  
...  

Acute lung injury (ALI) is a serious respiratory syndrome characterized with uncontrolled inflammatory response. Oxyberberine has strong potential for clinical usage since it showed strong anti-inflammatory, antifungal, and antiarrhythmic effects in various diseases. In the present study, we evaluated whether oxyberberine can inhibit lipopolysaccharide- (LPS-) induced ALI in vivo and further evaluated the possible involvement of mitophagy in vitro by using A549 cells, a human lung epithelial cell line. Our in vivo study shows that oxyberberine significantly inhibited LPS-induced lung pathological injury and lung edema, as indicated by the changes in lung wet/dry ratio and total protein levels in the BALF in mice. Moreover, oxyberberine inhibited inflammation, as indicated by the changes of neutrophil accumulation and production of proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in both the lung and bronchoalveolar lavage fluid (BALF) in ALI mice. Our in vitro study shows that LPS significantly decreased the protein level of mitochondrial proteins, including cytochrome c oxidase subunit IV (COX IV), p62, and mitofusin-2 (Mfn2) in A549 cells. In addition, LPS induced significant Parkin1 translocation from cytoplasm to mitochondria. These changes were significantly inhibited by oxyberberine. Notably, the inhibitory effect of oxyberberine was almost totally lost in the presence of lysosome fusion inhibitor bafilomycin A1 (Baf), a mitophagy inhibitor. In conclusion, the present study demonstrated that oxyberberine alleviated LPS-induced inflammation in ALI via inhibition of Parkin-mediated mitophagy.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


Sign in / Sign up

Export Citation Format

Share Document