Attenuation of hypoxic ventilation by hyperbaric O2: effects of pressure and exposure time

1989 ◽  
Vol 66 (2) ◽  
pp. 851-856 ◽  
Author(s):  
I. Liberzon ◽  
R. Arieli ◽  
D. Kerem

Hyperoxia affects O2 chemoreception in the highly perfused carotid bodies and causes a reduction of the ventilatory hypoxic drive (HD) as was shown for anesthetized cats and awake rats. We looked for a quantitative description of such an effect on HD as a function of both O2 pressure and exposure duration. Ventilation of rats was measured using the barometric method before and after hyperbaric O2 (HBO) exposure, at either air, 80% O2, or 4% O2. We used three exposure durations: 180, 550 and 900 min. The O2 pressure ranged between 1.2 and 3.0 ATA. At each time duration we used four to five groups of rats at a range of O2 pressures that yielded the full scale of effect on HD but avoided obvious lasting difficulties in breathing. HBO caused a reduction of breathing frequency and elevation of tidal volume in both air and 80% O2 but almost no change in minute ventilation. Hypoxic minute ventilation (4% O2) decreased after HBO, mainly through reduced frequency. HD was described by a power function of O2 pressure for each HBO duration. HD did not decline below 20% of the full control response. Ventilatory HD diminution is pictured as a function of both O2 pressure and HBO duration. The dependency of HD on exposure time and on pressure is similar to other known toxic effects of HBO.

1989 ◽  
Vol 67 (3) ◽  
pp. 1150-1156 ◽  
Author(s):  
D. Georgopoulos ◽  
S. G. Holtby ◽  
D. Berezanski ◽  
N. R. Anthonisen

In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.


2004 ◽  
Vol 97 (4) ◽  
pp. 1401-1407 ◽  
Author(s):  
Masahiko Izumizaki ◽  
Mieczyslaw Pokorski ◽  
Ikuo Homma

We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 123
Author(s):  
Jacek Jakubowski ◽  
Marek Kuchta ◽  
Roman Kubacki

This article investigates the issue of measuring high-power microwave (HPM) pulses. The high energy of these pulses poses a significant threat to many electronic systems, including those used to manage critical infrastructure. This work focuses on requirements for a potential portable measurement device and suggests the application of a method for this purpose, involving the use of a D-dot sensor and a rapid A/D converter. The applied converter enables recording the time waveform on the measuring chain output, also in the case of repetition and time duration of HPM signals. The authors also present a quantitative description of signal processing by the analogue section of the measurement chain solution presented herein and suggest algorithms for digital processing of the signals, the objective of which is to minimize low-frequency interference in the process of reconstructing the time waveform of an electric field using numerical integration.


2004 ◽  
Vol 97 (5) ◽  
pp. 1673-1680 ◽  
Author(s):  
Chris Morelli ◽  
M. Safwan Badr ◽  
Jason H. Mateika

We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 ± 0.82 vs. women, 4.70 ± 0.77 l·min−1·Torr−1; 150 Torr: men, 4.33 ± 1.15 vs. women, 3.21 ± 0.58 l·min−1·Torr−1). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 ± 1.40 vs. women, 5.97 ± 0.71 l·min−1·Torr−1; 150 Torr: men, 5.73 ± 0.81 vs. women, 3.83 ± 0.56 l·min−1·Torr−1). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.


Author(s):  
I Nengah Ardita ◽  
◽  
I Gusti Agung Bagus Wirajati ◽  
I Dewa Made Susila ◽  
Sudirman Sudirman ◽  
...  

Split air conditioning (AC) is the most widely used in the community for both commercial and domestic utilities. At the present refrigerant which used in Split AC is mostly common group of HFCs, such as R410a. R410a is a zeotropic refrigerant and if there is a leak in the system, it cannot be added this refrigerant. This will increase the cost of maintenance. The aims of this research is to investigate the retrofit of R410a with R32 on the Split AC system. The R32 is chosen because it has higher latent evaporation heat at the same temperature and has less effect on global warming. The refrigeration effect, the power consumption and the system performance are the main three quantities that want to be examined in this research which are observed before and after retrofit. Experimental investigation conducted during this research, including design and manufacture of experimental equipment, calibration and tools installment, collecting the experimental data and analysis by quantitative description method before and after retrofit. The results informed that cooling effect increased during the research, but the COP system has a slight decrease about 4%. R32 refrigerant is quite feasible as a retrofit refrigerant to R410a refrigerant.


2012 ◽  
Vol 166-169 ◽  
pp. 2774-2781
Author(s):  
Yong Zhang ◽  
Da Jian Hu ◽  
Lu Xue

In step with body Ⅱ, analytic solution and illustration of elastic energy releasing amount of rock mass dynamic destabilization are given for the first time in the form of precise and approximate catastrophe model. It is upgraded from qualitative understand to quantitative description that study on rock stability at the stage before and after earthquake and rockburst. The halting point’s position of rock mass dynamic destabilization is ascertained strictly, and it offers scientific basis for the calculation on earthquake efficiency, the study on earthquake energy magnitude released, earthquake stress drop, fault offset after earthquake and amount of elastic strain recovery of surrounding rock. The system possesses the capability of applying work to surroundings when it destabilizes, and earthquake wave energy is the work that destabilizing rock system applies to surroundings by way of destructive. The given illustration of elastic energy releasing amount implicates wealth of information, it produces credible evidence for confirming that the mathematical abstract of rock dynamic destabilization is fold catastrophe model.


1997 ◽  
Vol 83 (2) ◽  
pp. 599-607 ◽  
Author(s):  
Dimitar Sajkov ◽  
Alister Neill ◽  
Nicholas A. Saunders ◽  
R. Douglas McEvoy

Sajkov, Dimitar, Alister Neill, Nicholas A. Saunders, and R. Douglas McEvoy. Comparison of the effects of sustained isocapnic hypoxia on ventilation in men and women. J. Appl. Physiol. 83(2): 599–607, 1997.—Sleep-related respiratory disturbances are more common in men than in premenopausal women. This might, in part, be due to different susceptibilities to the respiratory depressant effects of hypoxia. Therefore, we compared ventilation during 10 min of baseline room-air breathing and 20-min sustained isocapnic hypoxia (fractional inspired O2 = 11%, arterial saturation of O2 ≈ 80%) followed by 10 min of breathing 100% O2 in 10 normal men and in 10 women in the follicular phase of the menstrual cycle. Control measurements were made during two transitions from room air (10 min) to 100% O2 (10 min) and averaged. Inspired minute ventilation (V˙i) after 2 min of hypoxia was the same in men and women [131 ± 6.1% baseline for men, 136 ± 7.7% baseline for women; not significant (NS)] and declined to the same level after 20 min (115 ± 5.0% baseline for men, 116 ± 6.6% baseline for women; NS) associated with a similar decline in inspiratory time and tidal volume. Breathing frequency did not change.V˙i decreased transiently during subsequent 100% O2 breathing in both men and women, associated with reduced frequency and duty cycle and increased expiratory time. The fall inV˙i was significantly greater than that observed during control hyperoxia experiments in men but not in women. We conclude that ventilatory responses to sustained isocapnic hypoxia do not differ between awake healthy men and women in the follicular phase of their menstrual cycle. However, after termination of isocapnic hypoxia, men appear to depress their ventilation to a greater degree than women.


2012 ◽  
Vol 10 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Paulo David Scatena Gonçales ◽  
Joyce Assis Polessi ◽  
Lital Moro Bass ◽  
Gisele de Paula Dias Santos ◽  
Paula Kiyomi Onaga Yokota ◽  
...  

OBJECTIVE: To evaluate the impact of the implementation of a rapid response team on the rate of cardiorespiratory arrests in mortality associated with cardiorespiratory arrests and on in-hospital mortality in a high complexity general hospital. METHODS: A retrospective analysis of cardiorespiratory arrests and in-hospital mortality events before and after implementation of a rapid response team. The period analyzed covered 19 months before intervention by the team (August 2005 to February 2007) and 19 months after the intervention (March 2007 to September 2008). RESULTS: During the pre-intervention period, 3.54 events of cardiorespiratory arrest/1,000 discharges and 16.27 deaths/1,000 discharges were noted. After the intervention, there was a reduction in the number of cardiorespiratory arrests and in the rate of in-hospital mortality; respectively, 1.69 events of cardiorespiratory arrest/1,000 discharges (p<0.001) and 14.34 deaths/1,000 discharges (p=0.029). CONCLUSION: The implementation of the rapid response team may have caused a significant reduction in the number of cardiorespiratory arrests. It was estimated that during the period from March 2007 to September 2008, the intervention probably saved 67 lives.


1991 ◽  
Vol 70 (1) ◽  
pp. 251-259 ◽  
Author(s):  
R. A. Darnall ◽  
G. Green ◽  
L. Pinto ◽  
N. Hart

Changes in local brain stem perfusion that alter extracellular fluid Pco2 and/or [H+] near central chemoreceptors may contribute to the decrease in respiration observed during hypoxia after peripheral chemoreceptor denervation and to the delayed decrease observed during hypoxia in the newborn. In this study, we measured the changes in respiration and brain stem blood flow (BBF) during 2–4 min of hypoxic hypoxia in both intact and denervated piglets and calculated the changes in brain stem Pco2 and [H+] that would be expected to occur as a result of the changes in BBF. All animals were anesthetized, spontaneously breathing, and between 2 and 7 days of age. Respiratory and other variables were measured before and during hypoxia in all animals, and BBF (microspheres) was measured in a subgroup of intact and denervated animals at 0, 30, and 260 s and at 0 and 80 s, respectively. During hypoxia, minute ventilation increased and then decreased (biphasic response) in the intact animals but decreased only in the denervated animals. BBF increased in a near linear fashion, and calculated brain stem extracellular fluid Pco2 and [H+] decreased over the first 80 s both before and after denervation. We speculate that a rapid increase in BBF during acute hypoxia decreases brain stem extracellular fluid Pco2 and [H+], which, in turn, negatively modulate the increase in respiratory drive produced by peripheral chemoreceptor input to the central respiratory generator.


1992 ◽  
Vol 72 (4) ◽  
pp. 1255-1260 ◽  
Author(s):  
A. H. Jansen ◽  
S. Ioffe ◽  
V. Chernick

The maturation of the respiratory sensitivity to CO2 was studied in three groups of anesthetized (ketamine, acepromazine) lambs 2–3, 14–16, and 21–22 days old. The lambs were tracheostomized, vagotomized, paralyzed, and ventilated with 100% O2. Phrenic nerve activity served as the measure of respiration. The lambs were hyperventilated to apneic threshold, and end-tidal PCO2 was raised in 0.5% steps for 5–7 min each to a maximum 7–8% and then decreased in similar steps to apneic threshold. The sinus nerves were cut, and the CO2 test procedure was repeated. Phrenic activity during the last 2 min of every step change was analyzed. The CO2 sensitivity before and after sinus nerve section was determined as change in percent minute phrenic output per Torr change in arterial PCO2 from apneic threshold. Mean apneic thresholds (arterial PCO2) were not significantly different among the groups: 34.8 +/- 2.08, 32.7 +/- 2.08, and 34.7 +/- 2.25 (SE) Torr for 2- to 3-, 14- to 16-, and 21- to 22-day-old lambs, respectively. After sinus denervation, apneic thresholds were raised in all groups [39.9 +/- 2.08, 40.9 +/- 2.08, and 45.3 +/- 2.25 (SE) Torr, respectively] but were not different from each other. CO2 response slopes did not change with age before or after sinus nerve section. We conclude that carotid bodies contribute to the CO2 response during hyperoxia by affecting the apneic threshold but do not affect the steady-state CO2 sensitivity and the central chemoreceptors are functionally mature shortly after birth.


Sign in / Sign up

Export Citation Format

Share Document