Effect of anabolic steroids on mitochondria and sarcotubular system of skeletal muscle

1991 ◽  
Vol 70 (3) ◽  
pp. 1038-1043 ◽  
Author(s):  
A. Saborido ◽  
J. Vila ◽  
F. Molano ◽  
A. Megias

Soleus and extensor digitorum longus (EDL) mitochondria and sarcotubular system were examined in sedentary and trained (treadmill for 12 wk) male rats that were treated with fluoxymesterone or methandrostanolone (2 mg/kg, 5 days/wk, for 8 wk). Neither physical exercise nor anabolic/androgenic steroid administration resulted in a significant change in muscle wet weight. Treatment with the anabolizing androgens increased succinate dehydrogenase activity in fast-twitch muscle mitochondria; this effect was not enhanced by training and was not observed in soleus mitochondria. On the other hand, the content of the slow-twitch muscle in sarcotubular fraction was increased in sedentary rats by fluoxymesterone or methandrostanolone treatment, whereas no significant changes were found in EDL. The training program affected adenosinetriphosphatase (ATPase) activities in the sarcotubular fraction; Mg2(+)-ATPase was increased in both soleus and EDL, but Ca2(+)-ATPase was decreased only in soleus. However, in sedentary animals only the Mg2(+)-dependent activity of EDL was increased by anabolizing androgen treatment, and this change was not potentiated by additional training. The present data indicate that anabolic/androgenic steroids can affect mitochondrial and sarcotubular enzymes in skeletal muscle. The effects are muscle-type specific.

1996 ◽  
Vol 271 (4) ◽  
pp. C1250-C1255 ◽  
Author(s):  
M. Wada ◽  
T. Okumoto ◽  
K. Toro ◽  
K. Masuda ◽  
T. Fukubayashi ◽  
...  

Myosin of human skeletal muscles was analyzed by means of several electrophoretic techniques. Myosin heavy chain (HC)-IIa-and HC-IIb-based isomyosins were identified by pyrophosphate-polyacrylamide gel electrophoresis (PP-PAGE). The electrophoretic mobilities of these fast-twitch muscle isomyosins differed in the order HC-IIa triplets < HC-IIb triplets. To determine the subunit composition of myosin molecules that function in intact muscle, two-dimensional electrophoresis in which the first and second dimensions were PP-PAGE and sodium dodecyl sulfate-PAGE, respectively, was also performed. Slow-twitch muscle isomyosin contained, in addition to slow-twitch light chain (LC) and HC-I isoforms, appreciable amounts of LC-2f, HC-IIa, and HC-IIb isoforms, and fast-twitch muscle isomyosin consisted of LC-2s and HC-I isoforms as well as fast-twitch LC and HC isoforms. Without consideration of HC- and slow-twitch alkali LC heterodimers, at least 31 possible isomyosins are derived from these findings on the subunit composition of isomyosins in human skeletal muscle.


2003 ◽  
Vol 81 (1) ◽  
pp. 28-39 ◽  
Author(s):  
Daniel A. von Deutsch ◽  
Imad K Abukhalaf ◽  
Lawrence E Wineski ◽  
Natalia A Silvestrov ◽  
Mohamed A Bayorh ◽  
...  

Anabolic agents such clenbuterol (Cb) are useful tools for probing the mechanisms by which muscles respond to disuse. Cb was examined under different loading conditions with respect to its effects on muscle mass, protein (myofibrillar and cytosolic), and spermidine content in mature male rats. Compared with control treatment, Cb significantly increased loaded and unloaded soleus, plantaris, and extensor digitorum longus (EDL) mass. Likewise, Cb significantly increased loaded and unloaded soleus (24.8 and 21.6%, respectively), plantaris (12.1 and 22.9%, respectively), and EDL (22.4 and 13.3%, respectively) myofibrillar protein content. After unloading, cytosolic proteins significantly increased in the EDL but decreased in the soleus and plantaris. Cb significantly increased cytosolic protein levels in all loaded muscles, while only causing increases in unloaded soleus. When compared with controls, unloading caused significant reductions in spermidine levels in the soleus (40.4%) and plantaris (35.9%) but caused increases in the EDL (54.8%). In contrast, Cb increased spermidine levels in unloaded soleus (42.9%), plantaris (102.8%), and EDL (287%). In loaded muscles, Cb increased spermidine levels in all three muscles, but to a lesser degree than under unloading conditions. Nonlinear regression analyses indicated that the plantaris behaves like a slow-twitch muscle under unloading conditions and like a fast-twitch muscle when loaded. This suggests that the responses of these muscles to unloading and (or) Cb treatment might be influenced by factors beyond fiber type alone.Key words: microgravity, skeletal muscle atrophy, nonlinear regression, clenbuterol, polyamines.


1992 ◽  
Vol 73 (6) ◽  
pp. 2713-2716 ◽  
Author(s):  
J. M. Ren ◽  
J. O. Holloszy

AMP deaminase catalyzes deamination of the AMP formed in contracting muscles to inosine 5′-monophosphate (IMP). Slow-twitch muscle has only approximately 30% as high a level of AMP deaminase activity as fast-twitch muscle in the rat, and rates of IMP formation during intense contractile activity are much lower in slow-twitch muscle. We found that feeding the creatine analogue beta-guanidinopropionic acid (beta-GPA) to rats, which results in creatine depletion, causes a large decrease in muscle AMP deaminase. This adaptation was used to evaluate the role of AMP deaminase activity level in accounting for differences in IMP production in slow-twitch and fast-twitch muscles. beta-GPA feeding for 3 wk lowered AMP deaminase activity in fast-twitch epitrochlearis muscle to a level similar to that found in the normal slow-twitch soleus muscle but had no effect on the magnitude of the increase in IMP in response to intense contractile activity. Despite a similar decrease in ATP in the normal soleus and the epitrochlearis from beta-GPA-fed rats, the increase in IMP was only approximately 30% as great in the soleus in response to intense contractile activity. These results demonstrate that the accumulation of less IMP in slow- compared with fast-twitch skeletal muscle during contractile activity is not due to the lower level of AMP deaminase in slow-twitch muscle.


1985 ◽  
Vol 59 (1) ◽  
pp. 137-141 ◽  
Author(s):  
W. L. Sembrowich ◽  
J. J. Quintinskie ◽  
G. Li

The kinetics of calcium (Ca2+) uptake have been studied in mitochondria isolated from the different types of skeletal muscle. These studies demonstrate that the Ca2+ uptake properties of skeletal mitochondria are similar to those from liver and cardiac mitochondria. The Ca2+ carriers apparently have a high affinity for Ca2+ (Michaelis constants in the microM range). The relationship between Ca2+ uptake and initial Ca2+ concentration (10(-5) to 10(-7) M) is sigmoid in all mitochondria from the different skeletal muscle types suggesting that the uptake process is cooperative. Hill plots reveal coefficients of approximately 2 for mitochondria from fast-twitch muscle and 3.5 for slow-twitch muscle, adding further evidence to the concept that the uptake process is cooperative. An analysis of the potential role of mitochondria in the sequestration of Ca2+ during muscular contraction demonstrated that mitochondria from slow-twitch muscle of both rats and rabbits can potentially account for 100% of the relaxation rate at a low frequency of stimulation (5 Hz). In fast-twitch muscle, the mitochondria appear unable to play a significant role in muscle relaxation, particularly at stimulation frequencies that are considered in the normal physiological range. In summary, it appears that Ca2+ uptake by mitochondria from slow-twitch skeletal muscle has kinetic characteristics which make it important as a potential regulator of Ca2+ within the muscle cell under normal physiological conditions.


1997 ◽  
Vol 273 (3) ◽  
pp. E479 ◽  
Author(s):  
M C Sugden ◽  
M J Holness ◽  
L G Fryer

Glucose 6-phosphate (G-6-P)-independent glycogen synthase (GSa) and glycogen synthase (GS) total activities were measured in muscles from 24-h-starved rats. Intravenous glucose tolerance tests (0.5 g/kg body wt) were used to produce physiological, transient increases in insulin and glucose concentrations. GS activation occurred at approximately 10 min after glucose administration with peak activation at approximately 15 min. GS activation was reversed approximately 15 min after insulin and glucose concentrations had returned to basal. No differences existed between fast- and slow-twitch muscles. Hyperinsulinemia (approximately 160 mU/ml) in the absence of hyperglycemia elicited 1.5-fold activation of GS (P < 0.001) in two of three fast-twitch muscles but did not activate GS in slow-twitch muscles. Glucose infusion (glycemia approximately 8 mM; insulin approximately 40 mU/ml) significantly (P < 0.01) increased the percentage of total GS in the GSa form in four of the five muscles. Hyperglycemia with modest hyperinsulinemia evoked greater enhancement of GSa activity in fast-twitch muscle than insulin alone at a higher concentration (P < 0.01). In summary, hyperinsulinemia without hyperglycemia does not result in maximal activation of GS in fast-twitch muscle, and a rise in glycemia is obligatory for GS activation by insulin in slow-twitch muscle. The data support an important role for glycemia in modulating the response of skeletal muscle GS to insulin and provide further evidence of heterogeneity among skeletal muscle types.


1993 ◽  
Vol 264 (5) ◽  
pp. C1246-C1251 ◽  
Author(s):  
P. G. Arabadjis ◽  
P. C. Tullson ◽  
R. L. Terjung

To determine the capacity for purine nucleotide degradation among skeletal muscle fiber types, we established energy-depleted conditions in muscles of the rat hindlimb by inducing muscle contraction during ischemia. After 5, 10, 15, or 20 min of ischemic contractions, representative muscle sections were freeze-clamped and analyzed for purine nucleotides, nucleosides, and bases. Fast-twitch muscle sections accumulated about fourfold more IMP than the slow-twitch red soleus muscle. Inosine begins to accumulate at < 0.5 mumol/g IMP in slow-twitch muscle and at approximately 2 mumol/g IMP in fast-twitch muscle. This suggests that inosine is formed intracellularly by 5'-nucleotidase acting on IMP and that the activity and/or substrate affinity of the 5'-nucleotidase present in slow-twitch muscle may be higher than in fast-twitch muscle. At similar concentrations of precursor IMP, slow-twitch muscle has a greater capacity for purine nucleoside formation and should be more dependent on salvage and de novo synthesis of purine for the maintenance of muscle adenine nucleotides. Fast-twitch muscles are better able to retain IMP for subsequent reamination due to their lower capacity to degrade IMP to inosine.


2011 ◽  
Vol 301 (3) ◽  
pp. R783-R790 ◽  
Author(s):  
Bradley J. Behnke ◽  
Robert B. Armstrong ◽  
Michael D. Delp

The influence of the sympathetic nervous system (SNS) upon vascular resistance is more profound in muscles comprised predominately of low-oxidative type IIB vs. high-oxidative type I fiber types. However, within muscles containing high-oxidative type IIA and IIX fibers, the role of the SNS on vasomotor tone is not well established. The purpose of this study was to examine the influence of sympathetic neural vasoconstrictor tone in muscles composed of different fiber types. In adult male rats, blood flow to the red and white portions of the gastrocnemius (GastRed and GastWhite, respectively) and the soleus muscle was measured pre- and postdenervation. Resistance arterioles from these muscles were removed, and dose responses to α1-phenylephrine or α2-clonidine adrenoreceptor agonists were determined with and without the vascular endothelium. Denervation resulted in a 2.7-fold increase in blood flow to the soleus and GastRed and an 8.7-fold increase in flow to the GastWhite. In isolated arterioles, α2-mediated vasoconstriction was greatest in GastWhite (∼50%) and less in GastRed (∼31%) and soleus (∼17%); differences among arterioles were abolished with the removal of the endothelium. There was greater sensitivity to α1-mediated vasoconstriction in the GastWhite and GastRed vs. the soleus, which was independent of whether the endothelium was present. These data indicate that 1) control of vascular resistance by the SNS in high-oxidative, fast-twitch muscle is intermediate to that of low-oxidative, fast-twitch and high-oxidative, slow-twitch muscles; and 2) the ability of the SNS to control blood flow to low-oxidative type IIB muscle appears to be mediated through postsynaptic α1- and α2-adrenoreceptors on the vascular smooth muscle.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


1988 ◽  
Vol 254 (5) ◽  
pp. C651-C656 ◽  
Author(s):  
P. Babij ◽  
F. W. Booth

Specific complementary DNA (cDNA) hybridization probes were used to estimate the levels of alpha-actin and cytochrome c mRNAs and also 18S rRNA in three models of skeletal muscle atrophy. After 7 days of hindlimb suspension, or immobilization, or denervation, protein content decreased 26-32% in all muscles studied except suspended fast-twitch muscle, which lost only half as much protein. alpha-Actin mRNA content decreased 51-66% and cytochrome c mRNA content decreased 42-61% in slow- and fast-twitch muscles in all three models of atrophy. However, total RNA content did not show similar directional changes; RNA content decreased 27-44% in suspended and immobilized muscle but was unchanged in denervated fast-twitch muscle. The results were interpreted to suggest that loss of weight-bearing function of skeletal muscle is a major factor affecting the levels of alpha-actin and cytochrome c mRNAs during muscle atrophy.


2000 ◽  
Vol 4 (1) ◽  
pp. 43-49 ◽  
Author(s):  
RAMAKRISHNAN Y. NAGARAJ ◽  
CHRISTOPHER M. NOSEK ◽  
MARCO A. P. BROTTO ◽  
MIYUKI NISHI ◽  
HIROSHI TAKESHIMA ◽  
...  

Mitsugumin 29 (MG29), a major protein component of the triad junction in skeletal muscle, has been identified to play roles in the formation of precise junctional membrane structures important for efficient signal conversion in excitation-contraction (E-C) coupling. We carried out several experiments to not only study the role of MG29 in normal muscle contraction but also to determine its role in muscle fatigue. We compared the in vitro contractile properties of three muscles types, extensor digitorum longus (EDL) (fast-twitch muscle), soleus (SOL) (slow-twitch muscle), and diaphragm (DPH) (mixed-fiber muscle), isolated from mice lacking the MG29 gene and wild-type mice prior to and after fatigue. Our results indicate that the mutant EDL and SOL muscles, but not DPH, are more susceptible to fatigue than the wild-type muscles. The mutant muscles not only fatigued to a greater extent but also recovered significantly less than the wild-type muscles. Following fatigue, the mutant EDL and SOL muscles produced lower twitch forces than the wild-type muscles; in addition, fatiguing produced a downward shift in the force-frequency relationship in the mutant mice compared with the wild-type controls. Our results indicate that fatiguing affects the E-C components of the mutant EDL and SOL muscles, and the effect of fatigue in these mutant muscles could be primarily due to an alteration in the intracellular Ca homeostasis.


Sign in / Sign up

Export Citation Format

Share Document