Angiotensin-converting enzyme preferentially hydrolyzes trans isomer of proline-containing substrate

1993 ◽  
Vol 75 (4) ◽  
pp. 1519-1524 ◽  
Author(s):  
M. P. Merker ◽  
C. A. Dawson ◽  
R. D. Bongard ◽  
D. L. Roerig ◽  
S. T. Haworth ◽  
...  

An analysis of the hydrolysis kinetics of the synthetic angiotensin-converting enzyme (ACE) substrate benzoyl-phenylalanyl-alanyl-proline (BPAP) in the intact lung suggested that 12–15% of the BPAP was in a form that could not be hydrolyzed by ACE in the time course of a single pass through the lungs [C. A. Dawson et al. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H853-H865, 1989]. BPAP has been found to exist as a mixture of cis and trans isomers in a ratio of approximately 14:86 in aqueous solution at equilibrium. Thus, one possible explanation for the incomplete hydrolysis of BPAP on passage through the intact lung is that the trans form is the preferred substrate for ACE. To examine this hypothesis, we measured BPAP hydrolysis by ACE in vitro over a range of ACE concentrations and in the presence and absence of the peptidyl-prolyl cis-trans isomerase cyclophilin. In the presence of a sufficient concentration of ACE and in the absence of cyclophilin, hydrolysis of [3H]BPAP by ACE followed biexponential progress curves, consistent with the hypothesis that the rate of hydrolysis of the majority (approximately 87%) of the substrate is proportional to ACE concentration, whereas the hydrolysis rate of the remaining substrate fraction is independent of enzyme concentration. The addition of cyclophilin resulted in an increase in the ACE-independent rate constant, an effect that was reversed by the cyclophilin inhibitor cyclosporin A. These results suggest that the enzyme-independent rate constant represents the rate of cis-trans isomerization and that the enzyme-dependent rate constant represents the hydrolysis of the trans isomer.(ABSTRACT TRUNCATED AT 250 WORDS)

1996 ◽  
Vol 270 (2) ◽  
pp. L251-L259 ◽  
Author(s):  
M. P. Merker ◽  
I. M. Armitage ◽  
S. H. Audi ◽  
L. T. Kakalis ◽  
J. H. Linehan ◽  
...  

We examined the hydrolysis kinetics of benzoyl-phenylalanyl-glycyl-proline (BPGP) in the isolated perfused lung and in vitro for evidence of preferential hydrolysis of the trans isomer by angiotensin-converting enzyme (ACE). Nuclear magnetic resonance spectroscopy showed that BPGP exists as cis and trans isomers in a ratio of 44:56. After a single pass through the perfused rabbit lung over a wide range of infused BPGP concentrations, 42% of the BPGP was not hydrolyzed. In single-pass bolus-injection studies, 41% of the injected BPGP was not hydrolyzed, and very little further hydrolysis occurred in a second passage of the bolus through the lungs. In rat lung recirculation and in vitro studies of BPGP hydrolysis by ACE, approximately 60% of the substrate was hydrolyzed rapidly compared with the remaining approximately 40%, and the peptidyl-prolyl cis-trans isomerase cyclophilin increased the rate of the slower phase of the reaction in both kinds of experiments. We conclude that the rapid hydrolysis phase represents primarily the hydrolysis rate of the trans isomer and the slower phase the cis-trans isomerization rate, suggesting that the trans isomer of BPGP is preferentially hydrolyzed by ACE in the perfused lung and in vitro.


1974 ◽  
Vol 141 (3) ◽  
pp. 915-917 ◽  
Author(s):  
Frederic E. Dorer ◽  
James W. Ryan ◽  
John M. Stewart

The hydrolysis of bradykinin and its higher homologues by angiotensin-converting enzyme has been investigated by using an automated ninhydrin technique. The results show an inverse relationship of hydrolysis rate with size and charge of the peptide, which parallels the inactivation in the pulmonary circulation and offers an explanation for the selectivity of metabolism of these kinins by the lungs.


1990 ◽  
Vol 258 (1) ◽  
pp. G143-G151
Author(s):  
N. W. Bunnett ◽  
J. H. Walsh ◽  
H. T. Debas

Peptidases degrade neuropeptides and thereby limit the duration and extent of their influence. This investigation examined the importance of peptidases in the degradation of the neuropeptide enkephalin in the stomach wall of the rat. Metabolism of [Leu5]- and [D-Ala2][Leu5]enkephalin by gastric membranes was examined in vitro. Degradation of [Tyr1-3H][Leu5]enkephalin was studied in the gastric submucosa of anesthetized and conscious rats in vivo by using a catheter to deliver peptide to tissues and implanted dialysis fibers to collect the metabolites. Specific inhibitors were used to assess the contribution of particular enzymes. [Leu5]- and [Tyr1-3H][Leu5]enkephalin were metabolized by membranes and in the stomach wall by hydrolysis of the Tyr1-Gly2 bond. Degradation was inhibited by the aminopeptidase inhibitor amastatin (10(-5) M in vitro, 10 nmol in vivo). Inhibitors of endopeptidase-24.11 (phosphoramidon) and angiotensin-converting enzyme (captopril) did not inhibit degradation. Metabolism of the aminopeptidase-resistant analogue [D-Ala2][Leu5]enkephalin by membranes was unaffected by amastatin and weakly inhibited by phosphoramidon affected by amastatin and weakly inhibited by phosphoramidon and captopril. A carboxypeptidase removed the COOH-terminal leucine residue and made a substantial contribution to degradation of both peptides by gastric membranes.


Author(s):  
A.Z. Dautova ◽  
E.A. Khazhieva ◽  
V.G. Shamratova ◽  
L.Z. Sadykova

The aim of the paper was to study the association of polymorphic variants of rs4646994 (I/D) of the angiotensin converting enzyme gene (ACE) and rs5810761 (+9/-9) of the bradykinin B2 receptor gene (BDKRB2) with erythrocyte adrenoreactivity (ARE) in athletes and untrained young men. Materials and Methods. The study involved 61 young men (aged 21–23) with different levels of motor activity (MA). ARE was evaluated according to the erythrocyte sedimentation rate (ESR) change under adrenaline in vitro at final concentrations 10-5, 10-6, 10-7, 10-9, 10-11, 10-13 g/ml of venous blood. According to the effect observed and ESR shifts under adrenaline, we distinguished 3 ARE types: antiaggregative (AnAg), areactive (Ar) and aggregative (Ar). Results. The results of comparative and correlation analyses demonstrated that young athletes with +9/-9 (BDKRB2) genotype were characterized by a higher aggregative resistance of erythrocytes to the effects of both physiological (<10-9 g/ml) (physiological adrenaline concentration, PAC) and stressful doses (>10-9 g/ml) of adrenaline (stress adrenaline concentration, SAC), as well as by predominance of AnAg and Ar ARE types. In athletes, among the representatives of different genotypes of АСЕ gene I/D polymorphism, the erythrocyte response to adrenaline did not have any statistically significant differences. In physically inactive students, namely individuals with the D/D genotype, maximal ESR deviation under PAC was less than in those with I/D genotype. Conclusion. Athletes with *-9 allele (+9/-9 genotype) in their genotype can be considered more stress-resistant, which is provided by optimal adaptive and compensatory body mechanisms. Apparently, resistance of cells to the adrenaline contributes much to the work of these mechanisms. As for the ACE gene polymorphism, its effect on the suspension characteristics of erythrocytes is less pronounced not only in physically inactive young men, but in athletes as well. Keywords: erythrocyte adrenoreactivity (ARE), stress tolerance, β2 bradykinin receptor gene (BDKRB2), angiotensin converting enzyme (ACE) gene, motor activity. Цель работы – изучить ассоциацию полиморфных вариантов rs4646994 (I/D) гена ангиотензинпревращающего фермента (АСЕ) и rs5810761 (+9/-9) гена рецептора брадикинина 2 типа (BDKRB2) с адренореактивностью эритроцитов (АРЭ) у спортсменов и юношей, ведущих физически малоактивный образ жизни. Материалы и методы. В исследовании принял участие 61 юноша с разным уровнем двигательной активности (ДА) в возрасте 21–23 лет. Оценку АРЭ проводили по изменению скорости оседания эритроцитов (СОЭ) под действием адреналина in vitro в конечных концентрациях 10-5, 10-6, 10-7, 10-8, 10-9, 10-11, 10-13 г/мл венозной крови. По характеру наблюдаемого эффекта в соответствии с направленностью сдвигов СОЭ в присутствии адреналина мы выделили 3 типа АРЭ: антиагрегационный (АнАг), ареактивный (Ар) и агрегационный (Аг). Результаты. По результатам сравнительного и корреляционного анализа установлено, что юноши-спортсмены с генотипом +9/-9 (BDKRB2) характеризуются более высокой агрегативной устойчивостью эритроцитов к воздействию как физиологических (10-9 г/мл и ниже), так и повышенных (стрессовых) доз (выше 10-8 г/мл крови) адреналина, а также преобладанием АнАг- и Ар-типов АРЭ. У представителей разных генотипов полиморфизма I/D гена АСЕ реакция эритроцитов на адреналин не имела статистически значимых различий в группе спортсменов, тогда как в группе малоактивных студентов у лиц с генотипом D/D максимальное отклонение СОЭ при ФКА было меньше, чем при генотипе I/D. Выводы. Спортсменов, имеющих в своём генотипе аллель *-9 (+9/-9 генотип), можно считать более стрессоустойчивыми, что обеспечивается оптимальными адаптивно-компенсаторными механизмами организма, существенная роль в обеспечении которых, по-видимому, принадлежит устойчивости клеток к действию адреналина. Что касается полиморфизма гена АСЕ, то его влияние на суспензионные характеристики эритроцитов выражено слабее не только у физически малоактивных юношей, но и у спортсменов. Ключевые слова: адренореактивность эритроцитов (АРЭ), стрессоустойчивость, ген рецептора брадикинина β2 (BDKRB2), ген ангиотензинпревращающего фермента (АСЕ), двигательная активность.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


1998 ◽  
Vol 330 (1) ◽  
pp. 61-65 ◽  
Author(s):  
R. Elwyn ISAAC ◽  
Liliane SCHOOFS ◽  
A. Tracy WILLIAMS ◽  
Dirk VEELAERT ◽  
Mohammed SAJID ◽  
...  

Insect peptidyl-dipeptidase A [angiotensin I-converting enzyme (ACE)] is a soluble single-domain peptidyl-dipeptidase that has many properties in common with the C-domain of mammalian somatic ACE and with the single-domain mammalian germinal ACE. Mammalian somatic ACE is important in blood homoeostasis, but the role of ACE in insects is not known. Immunocytochemistry has been used to localize ACE in the neuroendocrine system of the locust, Locusta migratoria. Staining was observed in five groups of neurosecretory cells in the brain and suboesophageal ganglion, in the nervi corpori cardiaci, the storage part of the corpora cardiaca and in the nervi corpori allati. In three groups of neurosecretory cells, ACE co-localized with locustamyotropins, suggesting a possible role for the enzyme in the metabolism of these neuropeptides. We demonstrate in vitro a novel activity of ACE that removes pairs of basic amino acid residues from a locustamyotropin peptide extended at the C-terminus with either Gly-Lys-Arg or Gly-Arg-Arg, corresponding to a consensus recognition sequence for endoproteolysis of prohormone proteins by prohormone convertases. The low Km and high kcat values (Km 7.3 and 5.0 μM, kcat 226 and 207 s-1 for the hydrolysis of Phe-Ser-Pro-Arg-Leu-Gly-Lys-Arg and Phe-Ser-Pro-Arg-Leu-Gly-Arg-Arg, respectively) obtained for the hydrolysis of these two peptides by insect ACE means that these peptides, along with mammalian bradykinin, are the most favoured in vitro ACE substrates so far identified. The discovery of this in vitro prohormone-processing activity of insect ACE provides a possible explanation for the intracellular co-localization of the enzyme with locustamyotropin peptides, and provides evidence for a new role for ACE in the biosynthesis of peptide hormones and transmitters.


1989 ◽  
Vol 262 (1) ◽  
pp. 125-130 ◽  
Author(s):  
P Dubreuil ◽  
P Fulcrand ◽  
M Rodriguez ◽  
H Fulcrand ◽  
J Laur ◽  
...  

ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments.


2020 ◽  
pp. 53-61
Author(s):  
Ansharullah Ansharullah ◽  
Muhammad Natsir

The aims of this study were to characterize the kinetics of enzymatic hydrolysis of sago starch, obtained from Southeast Sulawesi Indonesia. The enzyme used for hydrolysis was bacterial ∝-amylase (Termamyl 120L from Bacillus licheniformis, E. C. 3.2.1.1).  The method to determine the initial velocity (Vo) of the hydrolysis was developed by differentiation a nonlinear equation (NLE).  The Vo of the hydrolysis was measured at various pH (6.0, 6.5,and 7.0), temperatures (40, 60, 75 and 95oC), enzyme concentrations (0.5, 1.0, 1.5 and 2.0 µg per mL) and in the presence of 70 ppm Ca++. The optimum conditions of this experiment were found to be at pH 6.5 – 7.0 and 75oC, and the Vo increased with increasing enzyme concentration. The Vo values at various substrate concentrations were also determined, which were then used to calculate the enzymes kinetics constant of the hydrolysis, including Michaelis-Menten constant (Km) and maximum velocity (Vmax) using a Hanes plot.  Km and Vmax values were found to be higher in the measurement at pH 7.0 and 75oC. The Km values  at four  different combinations of pH and temperatures (pH 6.5, 40oC; pH 6.5, 75oC; pH 7.0, 40oC; pH 7.0, 75oC) were found to be 0.86, 3.23, 0.77 and 3.83 mg/mL, respectively; and Vmax values were 17.5, 54.3, 20.3 and 57.1 µg/mL/min, respectively. The results obtained showed that hydrolysis rate of this starch was somewhat low.


Sign in / Sign up

Export Citation Format

Share Document