Hypoxic depression of circadian rhythms in adult rats

2000 ◽  
Vol 88 (2) ◽  
pp. 365-368 ◽  
Author(s):  
Jacopo P. Mortola ◽  
Erin L. Seifert

Because the circadian rhythms of oxygen consumption (V˙o 2) and body temperature (Tb) could be contributed to by differences in thermogenesis and because hypoxia depresses thermogenesis in its various forms, we tested the hypothesis that hypoxia blunts the normal daily oscillations in V˙o 2and Tb. Adult rats were instrumented for measurements of Tb and activity by telemetry;V˙o 2 was measured by an open-flow method. Animals were exposed to normoxia (21% O2), hypoxia (10.5% O2), and normoxia again, each 1 wk in duration, in either a 12:12-h light-dark cycle (“synchronized”) or constant light (“free running”). In this latter case, the period of the cycle was ∼25 h. In synchronized conditions, hypoxia almost eliminated the Tb circadian oscillation, because of the blunting of the Tb rise during the dark phase. On return to normoxia, Tb rapidly increased toward the maximum normoxic values, and the normal cycle was then reestablished. In hypoxia, the amplitude of the activity andV˙o 2 oscillations averaged, respectively, 37 and 56% of normoxia. In free-running conditions, on return to normoxia the rhythm was reestablished at the expected phase of the cycle. Hence, the action of hypoxia was not on the clock itself but probably at the hypothalamic centers of thermoregulation. Hyperoxia (40% O2) or hypercapnia (3% CO2) had no significant effects on circadian oscillations, indicating that the effects of hypoxia did not reflect an undifferentiated response to changes in environmental gases. Modifications of the metabolism and Tb rhythms during hypoxia could be at the origin of sleep disturbances in cardiorespiratory patients and at high altitude.

2010 ◽  
Vol 2 (1) ◽  
pp. 48-56 ◽  
Author(s):  
B. Sailaja ◽  
S. Sivaprasad

Circadian rhythms in the silk gland protein profiles of Bombyx mori were analyzed under 12 h light and 12 h dark cycle (LD), continuous light (LL) and continuous dark (DD) conditions. The phase response curves of protein rhythms indicate the prevalence of a series of silk cycles, each comprising three phases; transcription, translation and consolidation of silk proteins. In the 24h- protein rhythm, the silk cycle repeats every 3h, 42 m under LD, 2h, 36m under LL and 3h under DD. The light and dark conditions advanced the rhythm of each silk cycle by 48m and 24m respectively. As a result the silk gland completes 7 rounds of protein synthesis under LD, 9 rounds under LL and 8 rounds under DD during the 24h-free running time of the rhythm. The light-induced clock-shift in the protein rhythm caused significant gains in economic parameters of sericulture with positive signals for enhancing silk productivity and quality.


1978 ◽  
Vol 235 (5) ◽  
pp. R243-R249 ◽  
Author(s):  
K. I. Honma ◽  
T. Hiroshige

Three biological rhythms (locomotor activity, body temperature, and plasma corticosterone) were measured simultaneously in individual rats under light-dark cycles and continuous light. Spontaneous locomotor activity was recorded on an Animex and body temperature was telemetrically monitored throughout the experiments. Blood samples were obtained serially at 2-h intervals on the experimental days. Phase angles of these rhythms were calculated by a least-squares spectrum analysis. Under light-dark cycles, the acrophases of locomotor activity, body temperature, and plasma corticosterone were found at 0029, 0106, and 1940 h, respectively. When rats were exposed to 200 lx continuous light, locomotor activity and body temperature showed free-running rhythms with a period of 25.2 h on the average. Plasma corticosterone levels determined at 12 days after exposure to continuous light exhibited a circadian rhythm with the acrophase shifted to 0720. The acrophases of locomotor activity and body temperature, determined simultaneously on the same day, were found to be located at 1303 and 1358 h, respectively. Phase-angle differences among the three rhythms on the 12th day of continuous light were essentially the same with those under the light-dark cycle. These results suggest that circadian rhythms of locomotor activity, body temperature, and plasma corticosterone are most probably coupled to a common internal oscillator in the rat.


1980 ◽  
Vol 58 (11) ◽  
pp. 2152-2155 ◽  
Author(s):  
Martin Kavaliers

The behaviour of the aquatic gastropod Helisoma trivolis was examined in a thermal gradient. Under a 12 h light: 12 h dark cycle gastropods displayed a diel rhythm of preferred temperature selection. Maximum temperatures (21–22 °C) were selected during the dark phase and minimum temperatures (17–18 °C) were selected during the light phase of the light–dark cycle. Under constant darkness temperature selection continued as an endogenous free-running circadian rhythm of behavioural thermoregulation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hicham Farsi ◽  
Mohamed R. Achaâban ◽  
Mohammed Piro ◽  
Béatrice Bothorel ◽  
Mohammed Ouassat ◽  
...  

Abstract In the dromedary camel, a well-adapted desert mammal, daily ambient temperature (Ta)-cycles have been shown to synchronize the central circadian clock. Such entrainment has been demonstrated by examining two circadian outputs, body temperature and melatonin rhythms. Locomotor activity (LA), another circadian output not yet investigated in the camel, may provide further information on such specific entrainment. To verify if daily LA is an endogenous rhythm and whether the desert Ta-cycle can entrain it, six dromedaries were first kept under total darkness and constant-Ta. Results showed that the LA rhythm free runs with a period of 24.8–24.9 h. After having verified that the light–dark cycle synchronizes LA, camels were subjected to a Ta-cycle with warmer temperatures during subjective days and cooler temperatures during subjective nights. Results showed that the free-running LA rhythm was entrained by the Ta-cycle with a period of exactly 24.0 h, while a 12 h Ta-cycle phase advance induced an inversion of the LA rhythm and advanced the acrophase by 9 h. Similarly, activity onset and offset were significantly advanced. All together, these results demonstrate that the Ta-cycle is a strong zeitgeber, able to entrain the camel LA rhythm, hence corroborating previous results concerning the Ta non-photic synchronization of the circadian master clock.


2019 ◽  
Vol 20 (10) ◽  
pp. 2452 ◽  
Author(s):  
Martha López-Canul ◽  
Seung Hyun Min ◽  
Luca Posa ◽  
Danilo De Gregorio ◽  
Annalida Bedini ◽  
...  

Melatonin (MLT) is a neurohormone that regulates many physiological functions including sleep, pain, thermoregulation, and circadian rhythms. MLT acts mainly through two G-protein-coupled receptors named MT1 and MT2, but also through an MLT type-3 receptor (MT3). However, the role of MLT receptor subtypes in thermoregulation is still unknown. We have thus investigated the effects of selective and non-selective MLT receptor agonists/antagonists on body temperature (Tb) in rats across the 12/12-h light–dark cycle. Rectal temperature was measured every 15 min from 4:00 a.m. to 9:30 a.m. and from 4:00 p.m. to 9:30 p.m., following subcutaneous injection of each compound at either 5:00 a.m. or 5:00 p.m. MLT (40 mg/kg) had no effect when injected at 5 a.m., whereas it decreased Tb during the light phase only when injected at 5:00 p.m. This effect was blocked by the selective MT2 receptor antagonist 4P-PDOT and the non-selective MT1/MT2 receptor antagonist, luzindole, but not by the α1/MT3 receptors antagonist prazosin. However, unlike MLT, neither the selective MT1 receptor partial agonist UCM871 (14 mg/kg) nor the selective MT2 partial agonist UCM924 (40 mg/kg) altered Tb during the light phase. In contrast, UCM871 injected at 5:00 p.m. increased Tb at the beginning of the dark phase, whereas UCM924 injected at 5:00 a.m. decreased Tb at the end of the dark phase. These effects were blocked by luzindole and 4P-PDOT, respectively. The MT3 receptor agonist GR135531 (10 mg/kg) did not affect Tb. These data suggest that the simultaneous activation of both MT1 and MT2 receptors is necessary to regulate Tb during the light phase, whereas in a complex but yet unknown manner, they regulate Tb differently during the dark phase. Overall, MT1 and MT2 receptors display complementary but also distinct roles in modulating circadian fluctuations of Tb.


2021 ◽  
pp. 074873042199994
Author(s):  
Rosa Eskandari ◽  
Lalanthi Ratnayake ◽  
Patricia L. Lakin-Thomas

Molecular models for the endogenous oscillators that drive circadian rhythms in eukaryotes center on rhythmic transcription/translation of a small number of “clock genes.” Although substantial evidence supports the concept that negative and positive transcription/translation feedback loops (TTFLs) are responsible for regulating the expression of these clock genes, certain rhythms in the filamentous fungus Neurospora crassa continue even when clock genes ( frq, wc-1, and wc-2) are not rhythmically expressed. Identification of the rhythmic processes operating outside of the TTFL has been a major unresolved area in circadian biology. Our lab previously identified a mutation ( vta) that abolishes FRQ-less rhythmicity of the conidiation rhythm and also affects rhythmicity when FRQ is functional. Further studies identified the vta gene product as a component of the TOR (Target of Rapamycin) nutrient-sensing pathway that is conserved in eukaryotes. We now report the discovery of TOR pathway components including GTR2 (homologous to the yeast protein Gtr2, and RAG C/D in mammals) as binding partners of VTA through co-immunoprecipitation (IP) and mass spectrometry analysis using a VTA-FLAG strain. Reciprocal IP with GTR2-FLAG found VTA as a binding partner. A Δ gtr2 strain was deficient in growth responses to amino acids. Free-running conidiation rhythms in a FRQ-less strain were abolished in Δ gtr2. Entrainment of a FRQ-less strain to cycles of heat pulses demonstrated that Δ gtr2 is defective in entrainment. In all of these assays, Δ gtr2 is similar to Δ vta. In addition, expression of GTR2 protein was found to be rhythmic across two circadian cycles, and functional VTA was required for GTR2 rhythmicity. FRQ protein exhibited the expected rhythm in the presence of GTR2 but the rhythmic level of FRQ dampened in the absence of GTR2. These results establish association of VTA with GTR2, and their role in maintaining functional circadian rhythms through the TOR pathway.


2021 ◽  
pp. 108705472097855
Author(s):  
Upasana Bondopadhyay ◽  
Unai Diaz-Orueta ◽  
Andrew N. Coogan

Objective: Children and adults with ADHD often report sleep disturbances that may form part of the etiology and/or symptomatology of ADHD. We review the evidence for sleep changes in children with ADHD. Methods: Systematic review with narrative synthesis assessing sleep and circadian function in children aged 5 to 13 years old with a diagnosis of ADHD. Results: 148 studies were included for review, incorporating data from 42,353 children. We found that sleep disturbances in ADHD are common and that they may worsen behavioral outcomes; moreover, sleep interventions may improve ADHD symptoms, and pharmacotherapy for ADHD may impact sleep. Conclusion: Sleep disturbance may represent a clinically important feature of ADHD in children, which might be therapeutically targeted in a useful way. There are a number of important gaps in the literature. We set out a manifesto for future research in the area of sleep, circadian rhythms, and ADHD.


1993 ◽  
Vol 264 (4) ◽  
pp. R708-R715 ◽  
Author(s):  
B. Jilge ◽  
H. Stahle

Free-running circadian rhythms of rabbits were exposed to a 11:55-11:55-h light-dark (LD) schedule. After complete entrainment (63 +/- 22 days), the predominantly nocturnally active rabbits were exposed to an additional zeitgeber, restricted food access (RF), which was imposed during the light period. In five animals RF had the same period (T) as the LD cycle (23:50 h), and in five other animals TRF was 24:10 h. At a period of 23:50 h for both zeitgebers, the rhythms of four animals were stably entrained to RF, while in one animal a component of the rhythm broke away from RF and entrained to the LD zeitgeber. In animals exposed to zeitgebers of different periods most of the activity rhythm also entrained to RF, but 20 +/- 7% of the activity entrained to the LD zeitgeber. The light-entrained activity component merged with the RF component when the zeitgebers crossed, and decomposition occurred when the phase difference exceeded 4-6 h. The results indicate that two circadian oscillator systems exist in the rabbit, one entrained by light-dark cycles and the other by feeding-fasting cycles. Both exert common control over a number of overt behavioral rhythms.


Sign in / Sign up

Export Citation Format

Share Document