scholarly journals Reductions in RIP140 are not required for exercise- and AICAR-mediated increases in skeletal muscle mitochondrial content

2011 ◽  
Vol 111 (3) ◽  
pp. 688-695 ◽  
Author(s):  
Bruce C. Frier ◽  
Chad R. Hancock ◽  
Jonathan P. Little ◽  
Natasha Fillmore ◽  
Tyler A. Bliss ◽  
...  

Receptor interacting protein 1 (RIP140) has recently been demonstrated to be a key player in the regulation of skeletal muscle mitochondrial content. We have shown that β-guanadinopropionic acid (β-GPA) feeding reduces RIP140 protein content and mRNA levels concomitant with increases in mitochondrial content (Williams DB, Sutherland LN, Bomhof MR, Basaraba SA, Thrush AB, Dyck DJ, Field CJ, Wright DC. Am J Physiol Endocrinol Metab 296: E1400–E1408, 2009). Since β-GPA feeding reduces high-energy phosphate levels and activates AMPK, alterations reminiscent of exercise, we hypothesized that exercise training would reduce RIP140 protein content. We further postulated that an acute bout of exercise, or interventions known to induce the expression of mitochondrial enzymes or genes involved in mitochondrial biogenesis, would result in decreases in nuclear RIP140 content. Two weeks of daily swim training increased markers of mitochondrial content in rat skeletal muscle independent of reductions in RIP140 protein. Similarly, high-intensity exercise training in humans failed to reduce RIP140 content despite increasing skeletal muscle mitochondrial enzymes. We found that 6 wk of daily 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) injections had no effect on RIP140 protein content in rat skeletal muscle while RIP140 content from LKB1 knockout mice was unaltered despite reductions in mitochondria. An acute bout of exercise, AICAR treatment, and epinephrine injections increased the mRNA levels of PGC-1α, COXIV, and lipin1 independent of decreases in nuclear RIP140 protein. Surprisingly these interventions increased RIP140 mRNA expression. In conclusion our results demonstrate that decreases in RIP140 protein content are not required for exercise and AMPK-dependent increases in skeletal muscle mitochondrial content, nor do acute perturbations alter the cellular localization of RIP140 in parallel with the induction of genes involved in mitochondrial biogenesis.

1993 ◽  
Vol 264 (3) ◽  
pp. C727-C733 ◽  
Author(s):  
G. J. Etgen ◽  
J. T. Brozinick ◽  
H. Y. Kang ◽  
J. L. Ivy

Exercise training increases the concentration of GLUT-4 protein in skeletal muscle that is associated with an increase in maximal insulin-stimulated glucose transport. The purpose of this study was to determine whether exercise training results in a long-lasting increase in insulin-stimulated glucose transport in rat skeletal muscle. Glucose uptake and skeletal muscle 3-O-methyl-D-glucose (3-MG) transport were determined during hindlimb perfusion in the presence of a maximally stimulating concentration of insulin (10 mU/ml). Hindlimb glucose uptake was approximately 29% above sedentary (Sed) levels in rats examined within 24 h (24H) of their last exercise session. However, when rats were examined 48 h (48H) after their last exercise session, hindlimb glucose uptake was not different from Sed levels. Maximal 3-MG transport was enhanced, above Sed levels, in red (RG; 72% increase) and white (WG; 44% increase) gastrocnemius and plantaris (Plan; 67% increase) muscles, but not soleus (Sol), of 24H rats. GLUT-4 protein content was significantly elevated in those muscles that exhibited enhanced 3-MG transport in 24H rats. GLUT-4 protein content was also elevated in RG, WG, and Plan of 48H rats and was not different from 24H rats. Despite the elevated GLUT-4 protein content, 3-MG transport in 48H rats was only slightly, although statistically not significantly, higher than in Sed rats. These results provide evidence that exercise training does not result in a persistent increase in skeletal muscle glucose uptake or transport, despite an increase in GLUT-4 protein content.


2021 ◽  
Author(s):  
S. C. Broome ◽  
T. Pham ◽  
A. J. Braakhuis ◽  
R. Narang ◽  
H. W. Wang ◽  
...  

ABSTRACTThe role of mitochondrial ROS production and signalling in muscle adaptations to exercise training has not been explored in detail. Here we investigated the effect of supplementation with the mitochondria-targeted antioxidant MitoQ on a) the skeletal muscle mitochondrial and antioxidant gene transcriptional response to acute high-intensity exercise and b) skeletal muscle mitochondrial content and function following exercise training. In a randomised, double-blind, placebo-controlled, parallel design study, 23 untrained men (age: 44 ± 7 years, VO2peak: 39.6 ± 7.9 ml/kg/min) were randomised to receive either MitoQ (20 mg/d) or a placebo for 10 days before completing a bout of high-intensity interval exercise (cycle ergometer, 10 × 60 s at VO2peak workload with 75 s rest). Blood samples and vastus lateralis muscle biopsies were collected before exercise and immediately and 3 hours after exercise. Participants then completed high-intensity interval training (HIIT; 3 sessions per week for 3 weeks) and another blood sample and muscle biopsy were collected. MitoQ supplementation augmented acute exercise-induced increases in skeletal muscle mRNA expression of the major regulator of proteins involved in mitochondrial biogenesis peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α). Despite this, training-induced increases in skeletal muscle mitochondrial content were unaffected by MitoQ supplementation. HIIT-induced increases in VO2peak and 20 km time trial performance were also unaffected by MitoQ while MitoQ augmented training-induced increases in peak power achieved during the VO2peak test. These data suggest that MitoQ supplementation enhances the effect of training on peak power, which may be related to the augmentation of skeletal muscle PGC1α expression following acute exercise. However, this effect does not appear to be related to an effect of MitoQ supplementation on HIIT-induced mitochondrial biogenesis in skeletal muscle and may therefore be the result of other adaptations mediated by PGC1α.


2001 ◽  
Vol 91 (3) ◽  
pp. 1176-1184 ◽  
Author(s):  
I. Mark Olfert ◽  
Ellen C. Breen ◽  
Odile Mathieu-Costello ◽  
Peter D. Wagner

Gene expression of vascular endothelial growth factor (VEGF), and to a lesser extent of transforming growth factor-β1 (TGF-β1) and basic fibroblast growth factor (bFGF), has been found to increase in rat skeletal muscle after a single exercise bout. In addition, acute hypoxia augments the VEGF mRNA response to exercise, which suggests that, if VEGF is important in muscle angiogenesis, hypoxic training might produce greater capillary growth than normoxic training. Therefore, we examined the effects of exercise training (treadmill running at the same absolute intensity) in normoxia and hypoxia (inspired O2 fraction = 0.12) on rat skeletal muscle capillarity and on resting and postexercise gene expression of VEGF, its major receptors (flt-1 and flk-1), TGF-β1, and bFGF. Normoxic training did not alter basal or exercise-induced VEGF mRNA levels but produced a modest twofold increase in bFGF mRNA ( P < 0.05). Rats trained in hypoxia exhibited an attenuated VEGF mRNA response to exercise (1.8-fold compared 3.4-fold with normoxic training; P< 0.05), absent TGF-β1 and flt-1 mRNA responses to exercise, and an approximately threefold ( P < 0.05) decrease in bFGF mRNA levels. flk-1 mRNA levels were not significantly altered by either normoxic or hypoxic training. An increase in skeletal muscle capillarity was observed only in hypoxically trained rats. These data show that, whereas training in hypoxia potentiates the adaptive angiogenic response of skeletal muscle to a given absolute intensity of exercise, this was not evident in the gene expression of VEGF or its receptors when assessed at the end of training.


1986 ◽  
Vol 250 (5) ◽  
pp. E570-E575
Author(s):  
G. K. Grimditch ◽  
R. J. Barnard ◽  
S. A. Kaplan ◽  
E. Sternlicht

We examined the hypothesis that the exercise training-induced increase in skeletal muscle insulin sensitivity is mediated by adaptations in insulin binding to sarcolemmal (SL) insulin receptors. Insulin binding studies were performed on rat skeletal muscle SL isolated from control and trained rats. No significant differences were noted between groups in body weight or fat. An intravenous glucose tolerance test showed an increase in whole-body insulin sensitivity with training, and specific D-glucose transport studies on isolated SL vesicles indicated that this was due in part to adaptations in skeletal muscle. Enzyme marker analyses revealed no differences in yield, purity, or contamination of SL membranes between the two groups. Scatchard analyses indicated no significant differences in the number of insulin binding sites per milligram SL protein on the high-affinity (15.0 +/- 4.1 vs. 18.1 +/- 6.4 X 10(9)) or on the low-affinity portions (925 +/- 80 vs. 884 +/- 106 X 10(9)) of the curves. The association constants of the high-affinity (0.764 +/- 0.154 vs. 0.685 +/- 0.264 X 10(9) M-1) and of the low affinity sites (0.0096 +/- 0.0012 vs. 0.0102 +/- 0.0012 X 10(9) M-1) also were similar. These results do not support the hypothesis that the increased sensitivity to insulin after exercise training is due to changes in SL insulin receptor binding.


2000 ◽  
Vol 279 (4) ◽  
pp. E806-E814 ◽  
Author(s):  
Henriette Pilegaard ◽  
George A. Ordway ◽  
Bengt Saltin ◽  
P. Darrell Neufer

Exercise training elicits a number of adaptive changes in skeletal muscle that result in an improved metabolic efficiency. The molecular mechanisms mediating the cellular adaptations to exercise training in human skeletal muscle are unknown. To test the hypothesis that recovery from exercise is associated with transcriptional activation of specific genes, six untrained male subjects completed 60–90 min of exhaustive one-legged knee extensor exercise for five consecutive days. On day 5, nuclei were isolated from biopsies of the vastus lateralis muscle of the untrained and the trained leg before exercise and from the trained leg immediately after exercise and after 15 min, 1 h, 2 h, and 4 h of recovery. Transcriptional activity of the uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase 4 (PDK4), and heme oxygenase-1 (HO-1) genes (relative to β-actin) increased by three- to sevenfold in response to exercise, peaking after 1–2 h of recovery. Increases in mRNA levels followed changes in transcription, peaking between 2 and 4 h after exercise. Lipoprotein lipase and carnitine pamitoyltransferase I gene transcription and mRNA levels showed similar but less dramatic induction patterns, with increases ranging from two- to threefold. In a separate study, a single 4-h bout of cycling exercise ( n = 4) elicited from 5 to >20-fold increases in UCP3, PDK4, and HO-1 transcription, suggesting that activation of these genes may be related to the duration or intensity of exercise. These data demonstrate that exercise induces transient increases in transcription of metabolic genes in human skeletal muscle. Moreover, the findings suggest that the cumulative effects of transient increases in transcription during recovery from consecutive bouts of exercise may represent the underlying kinetic basis for the cellular adaptations associated with exercise training.


2001 ◽  
Vol 90 (1) ◽  
pp. 389-396 ◽  
Author(s):  
Joe W. Gordon ◽  
Arne A. Rungi ◽  
Hidetoshi Inagaki ◽  
David A. Hood

Mitochondrial transcription factor A (Tfam) is a nuclear-encoded gene product that is imported into mitochondria and is required for the transcription of mitochondrial DNA (mtDNA). We hypothesized that conditions known to produce mitochondrial biogenesis in skeletal muscle would be preceded by an increase in Tfam expression. Therefore, rat muscle was stimulated (10 Hz, 3 h/day). Tfam mRNA levels were significantly elevated (by 55%) at 4 days and returned to control levels at 14 days. Tfam import into intermyofibrillar (IMF) mitochondria was increased by 52 and 61% ( P < 0.05) at 5 and 7 days, respectively. This corresponded to an increase in the level of import machinery components. Immunoblotting data indicated that IMF Tfam protein content was increased by 63% ( P < 0.05) at 7 days of stimulation. This was associated with a 49% ( P < 0.05) increase in complex formation at the mtDNA promoter and a 65% ( P< 0.05) increase in the levels of a mitochondrial transcript, cytochrome- c oxidase (COX) subunit III. Similarly, COX enzyme activity was elevated by 71% ( P < 0.05) after 7 days of contractile activity. These results indicate that early events in mitochondrial biogenesis include increases in Tfam mRNA, followed by accelerations in mitochondrial import and increased Tfam content, which correspond with increased binding to the mtDNA promoter region. This was accompanied by increased mitochondrial transcript levels and elevated COX activity. These data support the role of Tfam as a regulatory protein involved in contractile activity-induced mitochondrial biogenesis.


2007 ◽  
Vol 293 (3) ◽  
pp. R1335-R1341 ◽  
Author(s):  
Krista R. Howarth ◽  
Kirsten A. Burgomaster ◽  
Stuart M. Phillips ◽  
Martin J. Gibala

The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580–E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 ± 1 yr; peak oxygen uptake (V̇o2peak) = 41 ± 2 ml·kg−1·min−1] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer ( n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining V̇o2peak, and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased V̇o2peak, increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a ∼30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211–1216, 1998).


Sign in / Sign up

Export Citation Format

Share Document