Periodic breathing in the mouse

2002 ◽  
Vol 92 (3) ◽  
pp. 1133-1140 ◽  
Author(s):  
Fang Han ◽  
Shyam Subramanian ◽  
Edwin R. Price ◽  
Joseph Nadeau ◽  
Kingman P. Strohl

The hypothesis was that unstable breathing might be triggered by a brief hypoxia challenge in C57BL/6J (B6) mice, which in contrast to A/J mice are known not to exhibit short-term potentiation; as a consequence, instability of ventilatory behavior could be inherited through genetic mechanisms. Recordings of ventilatory behavior by the plethsmography method were made when unanesthetized B6 or A/J animals were reoxygenated with 100% O2 or air after exposure to 8% O2 or 3% CO2-10% O2 gas mixtures. Second, we examined the ventilatory behavior after termination of poikilocapnic hypoxia stimuli in recombinant inbred strains derived from B6 and A/J animals. Periodic breathing (PB) was defined as clustered breathing with either waxing and waning of ventilation or recurrent end-expiratory pauses (apnea) of ≥2 average breath durations, each pattern being repeated with a cycle number ≥3. With the abrupt return to room air from 8% O2, 100% of the 10 B6 mice exhibited PB. Among them, five showed breathing oscillations with apnea, but none of the 10 A/J mice exhibited cyclic oscillations of breathing. When the animals were reoxygenated after 3% CO2-10% O2 challenge, no PB was observed in A/J mice, whereas conditions still induced PB in B6 mice. (During 100% O2 reoxygenation, all 10 B6 mice had PB with apnea.) Expression of PB occurred in some but not all recombinant mice and was not associated with the pattern of breathing at rest. We conclude that differences in expression of PB between these strains indicate that genetic influences strongly affect the stability of ventilation in the mouse.

1975 ◽  
Vol 141 (4) ◽  
pp. 840-854 ◽  
Author(s):  
T Imanishi ◽  
O Makela

Mice of 17 inbred strains produced anti-(4-hydroxy-5-bromo-3-nitrophenyl)-acetyl (NBrP) of three different fine specificity types. Anti-NBrP antibodies of all allotype b mice (five strains tested) had a high relative affinity for (4-hydroxy-3.5-dinitrophenyl) acetyl (NNP) but low for (4-hydroxy-5-cloro-3-nitrophenyl) acetyl (NCP). Another category was characterized by high relative affinity for NCP but low for NNP. This category included most of the tested strains. The third category (CBA and C3H strains) had an intermediate fine specificity. Associated with fine specificity characteristics were anti-NBrP titers, mice of allotype b had lower titers than the other mice. Studies of congenic, recombinant inbred, F1 and backcross mice showed that both fine specificity and the magnitude of the anti-NBrP response of tbalb/C MICE WERE CONTROLLED BY AN ALLOTYPE-LINKED GENE. This gene was dominant over the C57BL/6 ALLELE. Lack of recombinant mice in the backcross generatioterns on the other suggest close linkage between the two genes.


2007 ◽  
Vol 103 (4) ◽  
pp. 1263-1268 ◽  
Author(s):  
Motoo Yamauchi ◽  
Jesse Dostal ◽  
Kingman P. Strohl

Acetazolamide (Acz), a carbonic anhydrase inhibitor, is used to manage periodic breathing associated with altitude and with heart failure. We examined whether Acz would alter posthypoxic ventilatory behavior in the C57BL/6J (B6) mouse model of recurrent central apnea. Experiments were performed with unanesthetized, awake adult male B6 mice ( n = 9), ventilatory behavior was measured using flow-through whole body plethysmography. Mice were given an intraperitoneal injection of either vehicle or Acz (40 mg/kg), and 1 h later they were exposed to 1 min of 8% O2-balance N2 (poikilocapnic hypoxia) or 12% O2-3% CO2-balance N2 (isocapnic hypoxia) followed by rapid reoxygenation (100% O2). Hypercapnic response (8% CO2-balance O2) was examined in six mice. With Acz, ventilation, including respiratory frequency, tidal volume, and minute ventilation, in room air was significantly higher and hyperoxic hypercapnic ventilatory responsiveness was generally lower compared with vehicle. Poikilocapnic and isocapnic hypoxic ventilatory responsiveness were similar among treatments. One minute after reoxygenation, animals given Acz exhibited posthypoxic frequency decline, a lower coefficient of variability for frequency, and no tendency toward periodic breathing, compared with vehicle treatment. We conclude that Acz improves unstable breathing in the B6 model, without altering hypoxic response or producing short-term potentiation, but with some blunting of hypercapnic responsiveness.


2003 ◽  
Vol 95 (3) ◽  
pp. 1097-1104 ◽  
Author(s):  
Edwin R. Price ◽  
Fang Han ◽  
Thomas E. Dick ◽  
Kingman P. Strohl

Periodic breathing (PB) is a fundamental breathing pattern in many common cardiopulmonary illnesses. The finding of PB in C57BL/6J (B6) mice was previously ascribed to strain differences in posthypoxic ventilatory and frequency decline in the B6 mice (Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP. J Appl Physiol 92: 1133-1140, 2002). We tested whether the induction of posthypoxic frequency decline in A/J mice, through administration of a neuronal nitric oxide synthase blocker [7-nitroindazole (7-NI); 60 mg/kg], would cause A/J mice to exhibit PB and/or alter PB expression in the B6 strain. Recordings of ventilatory behavior by the plethysmography method were made when unanesthetized B6 ( n = 10) or A/J ( n = 6) animals were reoxygenated with 100% O2 or room air after exposure to 8% O2. Before undergoing gas challenges, mice were given an intraperitoneal injection of either peanut oil alone (vehicle) or 7-NI suspended in peanut oil. Compared with vehicle, both strains of mice exhibited posthypoxic frequency decline and the absence of short-term potentiation with 7-NI administration. B6 mice continued to exhibit posthypoxic PB; however, the PB was characterized by longer cycle and apnea length. In contrast, A/J mice did not show increased tendency toward posthypoxic PB with 7-NI. We conclude that 7-NI further differentiates the A/J and B6 strains in terms of PB and that strain-related differences in posthypoxic frequency decline are not primary determinants of this strain difference in the occurrence of PB. Metabolism was not associated with either the expression of posthypoxic ventilatory decline or PB. Furthermore, neuronal nitric oxide may be an organizing feature in the presence, length, and/or cycle length of apnea in the susceptible strain.


2020 ◽  
Vol 15 ◽  
Author(s):  
Zakia Akter ◽  
Anamul Haque ◽  
Md. Sabir Hossain ◽  
Firoz Ahmed ◽  
Md Asiful Islam

Background: Cholera, a diarrheal illness causes millions of deaths worldwide due to large outbreaks. Monoclonal antibody used as therapeutic purposes of cholera are prone to be unstable due to various factors including self-aggregation. Objectives: In this bioinformatic analysis, we identified the aggregation prone regions (APRs) of different immunogens of antibody sequences (i.e., CTB, ZnM-CTB, ZnP-CTB, TcpA-CT-CTB, ZnM-TcpA-CT-CTB, ZnP-TcpA-CT-CTB, ZnM-TcpA, ZnP-TcpA, TcpA-CT-TcpA, ZnM-TcpA-CT-TcpA, ZnP-TcpA-CT-TcpA, Ogawa, Inaba and ZnM-Inaba) raised against Vibrio cholerae. Methods: To determine APRs in antibody sequences that were generated after immunizing Vibrio cholerae immunogens on Mus musculus, a total of 94 sequences were downloaded as FASTA format from a protein database and the algorithms such as Tango, Waltz, PASTA 2.0, and AGGRESCAN were followed to analyze probable APRs in all of the sequences. Results: A remarkably high number of regions in the monoclonal antibodies were identified to be APRs which could explain a cause of instability/short term protection of anticholera vaccine. Conclusion: To increase the stability, it would be interesting to eliminate the APR residues from the therapeutic antibodies in a such way that the antigen binding sites or the complementarity determining region loops involved in antigen recognition are not disrupted.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 312
Author(s):  
Naruki Hagiwara ◽  
Shoma Sekizaki ◽  
Yuji Kuwahara ◽  
Tetsuya Asai ◽  
Megumi Akai-Kasaya

Networks in the human brain are extremely complex and sophisticated. The abstract model of the human brain has been used in software development, specifically in artificial intelligence. Despite the remarkable outcomes achieved using artificial intelligence, the approach consumes a huge amount of computational resources. A possible solution to this issue is the development of processing circuits that physically resemble an artificial brain, which can offer low-energy loss and high-speed processing. This study demonstrated the synaptic functions of conductive polymer wires linking arbitrary electrodes in solution. By controlling the conductance of the wires, synaptic functions such as long-term potentiation and short-term plasticity were achieved, which are similar to the manner in which a synapse changes the strength of its connections. This novel organic artificial synapse can be used to construct information-processing circuits by wiring from scratch and learning efficiently in response to external stimuli.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mingxue Ma ◽  
Yao Ni ◽  
Zirong Chi ◽  
Wanqing Meng ◽  
Haiyang Yu ◽  
...  

AbstractThe ability to emulate multiplexed neurochemical transmission is an important step toward mimicking complex brain activities. Glutamate and dopamine are neurotransmitters that regulate thinking and impulse signals independently or synergistically. However, emulation of such simultaneous neurotransmission is still challenging. Here we report design and fabrication of synaptic transistor that emulates multiplexed neurochemical transmission of glutamate and dopamine. The device can perform glutamate-induced long-term potentiation, dopamine-induced short-term potentiation, or co-release-induced depression under particular stimulus patterns. More importantly, a balanced ternary system that uses our ambipolar synaptic device backtrack input ‘true’, ‘false’ and ‘unknown’ logic signals; this process is more similar to the information processing in human brains than a traditional binary neural network. This work provides new insight for neuromorphic systems to establish new principles to reproduce the complexity of a mammalian central nervous system from simple basic units.


Sign in / Sign up

Export Citation Format

Share Document