Adeno-associated virus mediated gene delivery into coronary microvessels of chronically instrumented dogs

2003 ◽  
Vol 95 (4) ◽  
pp. 1688-1694 ◽  
Author(s):  
Heiner Post ◽  
Jan Kajstura ◽  
Biao Lei ◽  
William C. Sessa ◽  
Barry Byrne ◽  
...  

The objective of this study was to assess the potential of adeno-associated virus (AAV)-mediated gene delivery into coronary microvessels in vivo in a large animal. Ten mongrel dogs were chronically instrumented and allowed to recover for 10 days. Dogs were reanesthetized, and the aorta was constricted by a hydraulic occluder, whereby left ventricular (LV) pressure increased by 30% and left circumflex coronary artery blood flow by 50%. Recombinant AAV (serotype 2, CMV enhancer/chicken β-actin promoter) encoding for green fluorescent protein (GFP) was injected as a bolus into the left atrium during aortic constriction at total titers of 1010or 1012infectious units. Dogs were followed for 2 ( n = 4)or4wk( n = 6). Hemodynamics or body weight did not change. In LV tissue slices, a fluorescein-labeled antibody to GFP stained endothelial and smooth muscle cells but was absent in myocytes. To quantify transduction, slices were then stained with antibodies against α-smooth muscle actin or von Willebrand factor. Approximately 4% of arterioles and 2% of microvessels stained positive for anti-GFP independent from viral titer or duration. By regression analyses, the percent of vessels transfected was proportional to the increase in LV systolic pressure during occlusion. AAV is a potential vector for gene transfer into the coronary microcirculation in large animals, including perhaps humans.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ruth M Castellanos Rivera ◽  
Ellen S. Pentz ◽  
Kenneth W. Gross ◽  
Silvia Medrano ◽  
Jing Yu ◽  
...  

RBP-J , the major downstream effector of Notch signaling, is necessary to maintain the number of juxtaglomerular (JG) cells. In addition, RBP-J regulates the plasticity of arteriolar smooth muscle cells to adopt the renin cell phenotype when homeostasis is threatened. We hypothesized that RBP-J acts as an on/off switch controlling the expression of genes that determine the renin phenotype. To determine whether RBP-J directly affects renin gene expression, we generated mice harboring a bacterial artificial chromosome (BAC) transgene with green fluorescent protein (GFP) under the control of the renin gene carrying a mutation in its RBP-J- binding site (Mut-BAC). Mut-BAC mice had markedly reduced GFP expression to 12.9 % ±0.01 (n=3) of the control (Wt-BAC) and a diminished response to homeostatic challenges: mut-BAC mice had a reduced number of GFP positive JG areas per total number of glomeruli (Wt-BAC: 25.1 % ±3.0, n=3; Mut-BAC: 9.3 % ±1.4, n=2, p<0.02) and no GFP expression along the arterioles. To determine whether the decrease in the number of JG cells in mice lacking RBP-J (cKO) was due to a diminished endowment of renin progenitor cells, we traced the fate of cells derived from the renin lineage by generating mice ( RBP-J fl/fl ; Ren1d +/cre ; R26R +/- ) in which cells lacking RBP-J simultaneously expressed β-galactosidase (β-gal). The pattern of β-gal in cKO and control kidneys was identical, indicating that cells derived from the renin lineage did not die but instead changed their phenotype. Next we investigated the phenotype adopted by the cells derived from the renin lineage. Expression of α-smooth muscle actin and smoothelin (a marker of mature smooth muscle) was significantly decreased to 41 % ±7.0 (n=2) and 44 % ±8.8 (n=2) respectively with respect to controls (p<0.01). In addition, mutant JG cells in vivo did not express genes characteristic of the renin phenotype such as renin, calponin1, Nfat and Akr1b7 expressing instead fibroblast-specific protein 1 indicating the adoption of a fibroblast-like phenotype. Results indicate that RBP-J directly governs a genetic program that controls the dual endocrine-contractile phenotype of the JG cell, which is crucial to maintain blood pressure and fluid-electrolyte homeostasis.


2021 ◽  
pp. 106689692110022
Author(s):  
Soma Jobbagy ◽  
Simmi Patel ◽  
Charles Marboe ◽  
Jie-Gen Jiang ◽  
Zsolt Jobbagy

Hamartomas are primary, benign neoplastic lesions that most commonly derive from a single variably differentiated cell lineage. Here, we report an unusual case of a cardiac hamartoma. A 62-year-old woman presented with chest pain and palpitations. Serial imaging revealed a large slowly growing and highly vascularized left ventricular mass, which required surgical resection. Microscopically, the lesion was composed of nodular fibrovascular proliferation with haphazardly embedded muscle bundles and peripheral calcifications. Immunohistochemical studies revealed prominent muscle-specific actin positive and smooth muscle actin positive muscle fiber bundles within a disorganized fibrovascular stroma. This characterization is most consistent with cardiac mesenchymal hamartoma. Relevant differential diagnoses for this lesion include hamartoma of mature cardiac myocytes (HMCMs) and intramuscular hemangioma. The prominent smooth muscle differentiation of muscle bundles was incompatible with defining features of HMCM. Absence of S100-positive nerve and mature adipose cells distinguished this lesion from the recently defined, heterogeneous cardiac mesenchymal hamartoma. Forty-seven cases of cardiac hamartoma reported from 1970 to 2020 were reviewed to provide histopathologic context.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Dan Shao ◽  
Peiyong Zhai ◽  
Junichi Sadoshima

Lats2 is a tumor suppressor and a serine/threonine kinase, acting downstream of mammalian sterile 20 like kinase1 (Mst1), which stimulates apoptosis and inhibits hypertrophy in cardiomyocytes (CM). We investigated the role of Lats2 in mediating myocardial injury after ischemia/reperfusion (IR). Phosphorylation of YAP, an in vivo substrate of Lats2, was increased after 45 minutes ischemia followed by 24 hours reperfusion in control mouse hearts compared with sham, but not in dominant negative (DN) Lats2 transgenic mouse (Tg) hearts, suggesting that Lats2 is activated by IR. The size of myocardial infarction (MI)/area at risk was significantly smaller in Tg mice than in NTg mice (19% and 49%, p<0.01). And there were fewer TUNEL positive cells in Tg than in NTg mice (0.04% and 0.11%, p<0.05). Following 30 min of global ischemia and 60 min of reperfusion in Langendorff perfused heart preparations, left ventricular (LV) systolic pressure (100 vs 71mmHg, p<0.05) and LV developed pressure (79 vs 47 mmHg, p<0.05) were significantly greater in Tg than in NTg mice, indicating that suppression of Lats2 induces better functional recovery after IR. Oxidative stress, as evaluated by 8-OHdG staining, was attenuated in Tg mice. In cultured CMs, DN-Lats2 significantly decreased H 2 O 2 -induced cell death. Overexpression of Lats2 significantly downregulated (51% and 75%, p<0.05), whereas that of DN-Last2 upregulated (100 and 70%, p<0.05), MnSOD and catalase, suggesting that Lats2 negatively regulates expression of antioxidants. Reporter gene assays showed that overexpression of Lats2 significantly inhibits (−70%), whereas knocking down Lats2 by sh-Lats2 increases (+60%), FoxO3-mediated transcriptional activity. Overexpression of Lats2 in CMs inhibited FoxO3 expression, whereas that of DN-Lats2 significantly inhibited FoxO3 downregulation after IR in vivo, suggesting that Lats2 negatively regulates FoxO3 protein expression, which may lead to the downregulation of MnSOD and catalase. Taken together, these results suggest that endogenous Lats2 plays an important role in mediating myocardial injury in response to IR, In part through downregulation of FoxO3 and consequent downregulation of antioxidants and increased oxidative stress in the heart.


2003 ◽  
Vol 81 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Ghada S Hassan ◽  
Fazila Chouiali ◽  
Takayuki Saito ◽  
Fu Hu ◽  
Stephen A Douglas ◽  
...  

Recent studies have shown that the vasoactive peptide urotensin-II (U-II) exerts a wide range of action on the cardiovascular system of various species. In the present study, we determined the in vivo effects of U-II on basal hemodynamics and cardiac function in the anesthetized intact rat. Intravenous bolus injection of human U-II resulted in a dose-dependent decrease in mean arterial pressure and left ventricular systolic pressure. Cardiac contractility represented by ±dP/dt was decreased after injection of U-II. However, there was no significant change in heart rate or diastolic pressure. The present study suggests that upregulation of myocardial U-II may contribute to impaired myocardial function in disease conditions such as congestive heart failure.Key words: urotensin-II, rat, infusion, heart.


1994 ◽  
Vol 266 (3) ◽  
pp. H1202-H1213 ◽  
Author(s):  
P. P. De Tombe ◽  
W. C. Little

Recent studies in isolated and in vivo canine hearts have suggested that the left ventricular end-systolic pressure (LVPes) of ejecting beats is the net result of a balance between positive and negative effects of ejection. At present, it is unknown whether these ejection effects are merely a ventricular chamber property or represent a fundamental myocardial property. Accordingly, we examined the effects of ejection in eight isolated rat cardiac trabeculae at the sarcomere level. We approximated in situ sarcomere shortening patterns using an iterative computer loading system. Six isovolumic contractions were compared with four ejecting contractions. The superfusing solution contained either 0.7 mM Ca2+ or 0.65 mM Sr2+ plus 0.15 mM Ca2+. With Ca2+, simulated LVPes ("LVP"es) of ejecting contractions was significantly lower than isovolumic "LVP"es (-5.3 +/- 5.6%), whereas with Sr2+, ejecting "LVP"es was significantly higher than isovolumic "LVP"es (+4.5 +/- 7.5%). Contraction duration and time to end systole were markedly prolonged in ejecting vs. isovolumic contractions with either Ca2+ or Sr2+. As a consequence, comparison of simulated LVP between ejecting and isovolumic beats throughout the contraction, i.e., at the same simulated LVV and time, revealed only a positive effect of ejection with either Ca2+ (+18.8 +/- 5.5%) or Sr2+ (+23.4 +/-9.3%). We conclude that both positive and negative effects of ejection are basic myocardial properties.


2018 ◽  
Vol 314 (1) ◽  
pp. G109-G118 ◽  
Author(s):  
Jagmohan Singh ◽  
Ipsita Mohanty ◽  
Satish Rattan

In these studies, we developed a novel approach of in vivo magnetofection for localized delivery of nucleic acids such as micro-RNA-139-5p (miR-139-5p; which is known to target Rho kinase2) to the circular smooth muscle layer of the internal anal sphincter (IAS). The IAS tone is known to play a major role in the rectoanal continence via activation of RhoA-associated kinase (RhoA/ROCK2). These studies established an optimized protocol for efficient gene delivery using an assembly of equal volumes of in vivo PolyMag and miR139-5p or anti-miR-139-5p (100 nM each) injected in the circular smooth muscle layer in the pinpointed areas of the rat perianal region and then incubated for 20 min under magnetic field. Magnetofection efficiency was confirmed and analyzed by confocal microscopy of FITC-tagged siRNA. Using physiological and biochemical approaches, we investigated the effects of miR-139-5p and anti-miR-139-5p on basal intraluminal IAS pressure (IASP), fecal pellet count, IAS tone, agonist-induced contraction, contraction-relaxation kinetics, and RhoA/ROCK2 signaling. Present studies demonstrate that magnetofection-mediated miR-139-5p delivery significantly decreased RhoA/ROCK2, p-MYPT1, and p-MLC20 signaling, leading to decreases in the basal IASP and IAS tone and in rates of contraction and relaxation associated with increase in fecal pellet output. Interestingly, anti-miR-139-5p transfection had opposite effects on these parameters. Collectively, these data demonstrate that magnetofection is a promising novel method of in vivo gene delivery and of nucleotides to the internal anal sphincter for the site-directed and targeted therapy for rectoanal motility disorders. NEW & NOTEWORTHY These studies for the first time demonstrate the success of topical in vivo magnetofection (MF) of nucleic acids using perianal injections. To demonstrate its effectiveness, we used FITC-tagged siRNA via immunofluorescence microcopy and functional and biochemical evidence using miR-139-5p (which is known to target ROCK2). In conclusion, MF allows safe, convenient, efficient, and targeted delivery of oligonucleotides such as siRNAs and microRNAs. These studies have direct therapeutic implications in rectoanal motility disorders especially associated with IAS.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Anastasios Lymperopoulos ◽  
Ashley Bathgate ◽  
Norma C Salazar

Introduction: It is widely accepted nowadays that elevation of serum levels of aldosterone, a mineralocorticoid hormone with toxic effects in several cardiovascular tissues, including the heart and cerebral blood vessels, can significantly raise stroke risk. The success of mineralocorticoid receptor blockers, such as eplerenone, at preventing stroke attacks attests to this. Aldosterone is normally produced and secreted by the adrenal cortex in response to angiotensin II. We recently reported that adrenal βarrestin1 (βarr1) plays a crucial role in the physiological angiotensin II-stimulated aldosterone production in the adrenal cortex, leading to marked elevation of circulating serum aldosterone levels in vivo (Lymperopoulos A. et al., Proc. Natl. Acad. Sci. USA. 2009;106:5825-5830). Hypothesis: Herein, we examined the potential impact of this adrenal βarr1-dependent aldosterone elevation on stroke risk in experimental animals in vivo. Methods: We used the βarr1 knockout (βarr1KO) mouse model, studying it alongside wild type (WT) control mice, and also adult male Sprague-Dawley rats, in which adrenal βarr1 was overexpressed in vivo via adrenal-targeted adenoviral-mediated βarr1 gene transfer. Serum aldosterone was measured by ELISA and blood pressure via telemetry. Results: Serum aldosterone at 7 days post-in vivo gene delivery was markedly elevated in adrenal βarr1-overexpressing rats (536+50 pg/ml), compared to control rats receiving the green fluorescent protein (GFP) adenoviral transgene (235+40 pg/ml, p<0.05, n=5). This translated to a significant increase in mean arterial pressure of the βarr1-overexpressing rats (155+5 mmHg) compared to control GFP-expressing rats (137+8 mmHg, p<0.05, n=5), again at 7 days post-in vivo gene delivery, which was prevented by concurrent eplerenone treatment. In contrast, βarr1KO mice had significantly lower serum aldosterone levels (270+20 pg/ml) compared to WT controls (498+35 pg/ml, p<0.05, n=5), at 4 weeks post-experimental myocardial infarction. Conclusions: Adrenal βarr1 up-regulation can dramatically increase circulating aldosterone levels and systemic blood pressure, thus conferring increased risk for stroke in experimental rodents.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hung Q Ly ◽  
Yoshiaki Kawase ◽  
Fabrice A Prunier ◽  
Djamel Lebeche ◽  
Yafen Shi ◽  
...  

Background: Reduced activity and expression of sarcoplasmic reticulum Ca 2+ ATPase (SERCA2a) is known to occur in HF. Method: Our 4-month study examined the effects of SERCA2a gene transfer in a swine volume-overload HF (VO-HF) model. Using Yorkshire-Landrace swine, HF was created by severing mitral apparatus chordae to induce mitral regurgitation. Results: At 2 months (M), a compensated state of VO-HF was found: prolongation of the rate of isovolumic relaxation (Tau), increased left ventricular internal diameter diastolic and systolic diameters (LVIDd, LVIDs). At 2M, intracoronary injection of adeno-associated virus serotype 1 vector carrying SERCA2a under a cytomegalovirus promoter (AAV1.SERCA2a) (n = 10) vs. saline (n = 6) was performed. At 4M, gene transfer resulted in (A) positive LV inotropic effects: (dP/dt)/P, 15.5 ± 3.0 sec − 1 SERCA2a-group vs. 21.2 ± 3.2 sec − 1 controls; p < 0.01; (B) a favorable trend in LV lusitropic effects: Tau, 0.037 ± 0.019 vs. 0.051 ± 0.01 msec, p = 0.09; (C) improvement in LV geometry: % change in LVIDs, +15 ± 11% controls vs. −3.0 ± 10% SERCA2a-group, p < 0.01. At 4M, BNP levels remained stable in post- SERCA2a gene transfer, in contrast to the progressive rising levels among controls. Further, cardiac SERCA2a expression was significantly decreased in controls whereas it was restored to normal levels in the SERCA2a group (Figure ). Lastly, there was no histopathological evidence of myocardial inflammatory reaction or necrosis. Conclusion: Overexpression of SERCA2a by in vivo AAV1-mediated intracoronary gene transfer preserved systolic function, potentially prevented diastolic dysfunction and improved ventricular remodeling.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Gabriel Wong ◽  
Denise Mai ◽  
Jingyuan Li ◽  
Salil Sharma ◽  
...  

Pulmonary hypertension (PH) is a chronic lung disease characterized by progressively elevated pulmonary arterial pressures and severe pulmonary vascular remodeling resulting from interactions between oxidized lipoprotein deposition and increased endothelial proliferation. Previously we have shown increased plasma levels of biological oxidation products such as hydroxyoctadecadienoic acids (HODEs) and hydroxyeicosatetraenoic acids (HETEs) in the rat monocrotaline model of PH. Here we investigated the role of HETEs and HODEs in the development of PH and whether their inhibition with the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) attenuates the progression of PH. Mice were placed in a hypoxic chamber with O2 concentrations of ≤10% for 21 days and either left untreated to develop PH (n=7) or treated with NDGA daily (10mg/kg/day, i.p., n=4) from day 1. Direct RV catheterization was terminally performed to record RV pressure (RVP). Pulmonary arteriolar thickening and oxidized lipid deposition were assessed by staining lung sections with Masson’s Trichrome or with α-smooth muscle actin and E-06 (marker for oxidized low-density lipoproteins). In vitro, human pulmonary artery smooth muscle cell (hPASMC) proliferation was assessed by MTT assays in the absence or presence of 12-HETE (100ng/ml), 9-HODE (1µg/ml) and 13-HODE (1µg/ml) alone or together with NDGA (10, 25 and 50µM). In-vitro, HETE/HODE treatment increased hPASMC proliferation ~ 2-fold when compared to untreated cells and NDGA significantly inhibited the proliferative effects of all three oxidized lipids. In-vivo, NDGA treatment prevented the development of PH. RVP was lower in the NDGA-treated group vs. the PH group (24.01±1.39mmHg vs. 36.91±5.74mmHg, p<0.05) and was comparable to control normoxic mice (20.93±2.52mmHg). RV hypertrophy index was significantly elevated in the PH mice versus control mice (0.38±0.03 vs. 0.28±0.02 (p<0.001), while NDGA treatment completely prevented the development of RV hypertrophy (0.28±0.04). Lung sections demonstrated arteriolar thickening and E-06 positive deposits in the PH group, which was prevented by NDGA therapy. We conclude that oxidized fatty acid deposition and accumulation might play a role in the development of PH.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 706-707
Author(s):  
Robert Q Miao ◽  
Jun Agata ◽  
Lee Chao ◽  
Julie Chao

P76 Kallistatin is a serine proteinase inhibitor (serpin) which has multifunctions including regulation of tissue kallikrein activity, blood pressure, inflammation and neointima hyperplasia. In this study, we investigated the potential role of kallistatin in vascular biology by studying its effects on the proliferation, migration and adhesion of cultured primary human endothelial cells in vitro, and angiogenesis in the ischemic hindlimb of rats. Purified kallistatin significantly inhibits cultured endothelial cell proliferation, migration and adhesion induced by VEGF or bFGF. To further investigate the role of kallistatin in vascular growth in vivo, we prepared adenovirus carrying the human kallistatin gene under the control of the cytomegalovirus promoter/enhancer (Ad.CMV-cHKBP). Expression of recombinant human kallistatin in HEK 293 cells transfected with Ad.CMV-cHKBP was identified by a specific ELISA. The effect of adenovirus-mediated kallistatin gene delivery on angiogenesis was evaluated in a rat model of hindlimb ischemia. Adenovirus carrying the human kallistatin or green fluorescent protein (GFP) gene were injected locally into the ischemic adductor at the time of surgery. Histological and morphometric analysis at 14 days post injection showed that adenovirus-mediated kallistatin gene delivery significantly reduced capillary density in the ischemic muscle as compared to that of control rats injected with GFP. The anti-angiogenic effect of kallistatin was associated with reduced regional blood flow in the ischemic hindlimb measured by microsphere assays. Expression of human kallistatin was identified in the injected muscle and immunoreactive human kallistatin levels were measured in the muscle and in the circulation of rats following kallistatin gene delivery. These results demonstrate a novel role of kallistatin in the inhibition of angiogenesis and in vascular remodeling.


Sign in / Sign up

Export Citation Format

Share Document