Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins

2014 ◽  
Vol 116 (9) ◽  
pp. 1238-1250 ◽  
Author(s):  
Masaki Takimoto ◽  
Taku Hamada

The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome- c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5–24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5–10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.

2013 ◽  
Vol 83 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Rebecca L. Sweet ◽  
Jason A. Zastre

It is well established that thiamine deficiency results in an excess of metabolic intermediates such as lactate and pyruvate, which is likely due to insufficient levels of cofactor for the function of thiamine-dependent enzymes. When in excess, both pyruvate and lactate can increase the stabilization of the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, resulting in the trans-activation of HIF-1α regulated genes independent of low oxygen, termed pseudo-hypoxia. Therefore, the resulting dysfunction in cellular metabolism and accumulation of pyruvate and lactate during thiamine deficiency may facilitate a pseudo-hypoxic state. In order to investigate the possibility of a transcriptional relationship between hypoxia and thiamine deficiency, we measured alterations in metabolic intermediates, HIF-1α stabilization, and gene expression. We found an increase in intracellular pyruvate and extracellular lactate levels after thiamine deficiency exposure to the neuroblastoma cell line SK-N-BE. Similar to cells exposed to hypoxia, there was a corresponding increase in HIF-1α stabilization and activation of target gene expression during thiamine deficiency, including glucose transporter-1 (GLUT1), vascular endothelial growth factor (VEGF), and aldolase A. Both hypoxia and thiamine deficiency exposure resulted in an increase in the expression of the thiamine transporter SLC19A3. These results indicate thiamine deficiency induces HIF-1α-mediated gene expression similar to that observed in hypoxic stress, and may provide evidence for a central transcriptional response associated with the clinical manifestations of thiamine deficiency.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1104 ◽  
Author(s):  
Alessandro Leone ◽  
Ramona De Amicis ◽  
Chiara Lessa ◽  
Anna Tagliabue ◽  
Claudia Trentani ◽  
...  

The ketogenic diet (KD) is the first line intervention for glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency, and is recommended for refractory epilepsy. It is a normo-caloric, high-fat, adequate-protein, and low-carbohydrate diet aimed at switching the brain metabolism from glucose dependence to the utilization of ketone bodies. Several variants of KD are currently available. Depending on the variant, KDs require the almost total exclusion, or a limited consumption of carbohydrates. Thus, there is total avoidance, or a limited consumption of cereal-based foods, and a reduction in fruit and vegetable intake. KDs, especially the more restrictive variants, are characterized by low variability, palatability, and tolerability, as well as by side-effects, like gastrointestinal disorders, nephrolithiasis, growth retardation, hyperlipidemia, and mineral and vitamin deficiency. In recent years, in an effort to improve the quality of life of patients on KDs, food companies have started to develop, and commercialize, several food products specific for such patients. This review summarizes the foods themselves, including sweeteners, and food products currently available for the ketogenic dietary treatment of neurological diseases. It describes the nutritional characteristics and gives indications for the use of the different products, taking into account their metabolic and health effects.


Sign in / Sign up

Export Citation Format

Share Document