Effects of interval and continuous training on O2 uptake kinetics during severe-intensity exercise initiated from an elevated metabolic baseline

2014 ◽  
Vol 116 (8) ◽  
pp. 1068-1077 ◽  
Author(s):  
Mariasole Da Boit ◽  
Stephen J. Bailey ◽  
Steven Callow ◽  
Fred J. DiMenna ◽  
Andrew M. Jones

The purpose of this study was to test the hypothesis that V̇o2 kinetics would be speeded to a greater extent following repeated sprint training (RST), compared with continuous endurance training (ET), in the transition from moderate- to severe-intensity exercise. Twenty-three recreationally active subjects were randomly assigned to complete six sessions of ET (60–110 min of moderate-intensity cycling) or RST (four to seven 30-s all-out Wingate tests) over a 2-wk period. Subjects completed three identical work-to-work cycling exercise tests before and after the intervention period, consisting of baseline cycling at 20 W followed by sequential step increments to moderate- and severe-intensity work rates. The severe-intensity bout was continued to exhaustion on one occasion and was followed by a 60-s all-out sprint on another occasion. Phase II pulmonary V̇o2 kinetics were speeded by a similar magnitude in both the lower (ET pre, 28 ± 4; ET post, 22 ± 4 s; RST pre, 25 ± 8; RST post, 20 ± 7 s) and upper (ET pre, 50 ± 10; ET post, 39 ± 11 s; RST pre, 54 ± 7; RST post, 40 ± 11 s) steps of the work-to-work test following ET and RST ( P < 0.05). The tolerable duration of exercise and the total amount of sprint work completed in the exercise performance test were also similarly enhanced by ET and RST ( P < 0.05). Therefore, ET and RST provoked comparable improvements in V̇o2 kinetics and exercise performance in the transition from an elevated baseline work rate, with RST being a more time-efficient approach to elicit these adaptations.

2015 ◽  
Vol 119 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Stephen J. Bailey ◽  
Jamie R. Blackwell ◽  
Terrence Lord ◽  
Anni Vanhatalo ◽  
Paul G. Winyard ◽  
...  

The purpose of this study was to compare the effects of l-citrulline (Cit) and l-arginine (Arg) supplementation on nitric oxide (NO) biomarkers, pulmonary O2 uptake (V̇o2) kinetics, and exercise performance. In a randomized, placebo (Pla)-controlled, crossover study, 10 healthy adult men completed moderate- and severe-intensity cycling exercise on days 6 and 7 of a 7-day supplementation period with Pla, Arg (6 g/day), and Cit (6 g/day). Compared with Pla, plasma Arg concentration was increased by a similar magnitude with Arg and Cit supplementation, but plasma Cit concentration was only increased ( P < 0.001) with Cit supplementation. Plasma nitrite (NO2−) concentration was increased with Arg supplementation ( P < 0.05) and tended to increase with Cit supplementation ( P = 0.08) compared with Pla (83 ± 25, 106 ± 41, and 100 ± 38 nM with Pla, Arg, and Cit, respectively); however, mean arterial blood pressure was only lower ( P < 0.05) after Cit supplementation. The steady-state V̇o2 amplitude during moderate-intensity cycle exercise was not significantly different between supplements, but Cit lowered the V̇o2 mean response time (59 ± 8 and 53 ± 5 s with Pla and Cit, respectively, P < 0.05) during severe-intensity exercise, improved tolerance to severe-intensity exercise (589 ± 101 and 661 ± 107 s with Pla and Cit, respectively), and increased the total amount of work completed in the exercise performance test (123 ± 18 and 125 ± 19 kJ with Pla and Cit, respectively, P < 0.05). These variables were not altered by Arg supplementation ( P > 0.05). In conclusion, these results suggest that short-term Cit, but not Arg, supplementation can improve blood pressure, V̇o2 kinetics, and exercise performance in healthy adults.


Author(s):  
Wenqian Yang ◽  
Yuqian Liu ◽  
Guang Yang ◽  
Binglin Meng ◽  
Zhicheng Yi ◽  
...  

The gut microbiota is closely associated with the health of the host and is affected by many factors, including exercise. In this study, we compared the gut microbial changes and exercise performance over a 14-week period in mice that performed exercise (NE; n = 15) and mice that did not perform exercise (NC; n = 15). Mice were subjected to stool collection and exercise tests one week prior to adaptive training and after 2, 6, 10, and 14 weeks of exercise. Bacteria associated with the stool samples were assessed via Illumina-based 16S rRNA gene sequencing. While there was no significant difference in body weight between the groups (p &gt; 0.05), the NE group had a significantly higher exercise performance from weeks 2–14 (p &lt; 0.01) and lower fat coefficient (p &lt; 0.01) compared with the NC group. The Shannon index of the gut microbiota in the NC group was higher than that in the NE group at weeks 6 and 10, and the Chao1 index was higher than that in the NE group at week 14. Exercise performance positively correlated with the relative abundance of Phascolarctobacterium. Grouped time series data analysis demonstrated that Bifidobacteria, Coprococcus, and one unnamed genus in the Clostridiales order were significantly increased in the NE group, which correlated with increased glucose, flavonoid, arginine, and proline metabolism. In conclusion, moderate-intensity treadmill exercise significantly increased the exercise performance of mice and changed the core bacteria and bacterial metabolic activity. These results provide a reference for studying the effects of exercise intervention and exercise performance on the gut microbiota of mice.


Author(s):  
Sigbjørn Litleskare ◽  
Eystein Enoksen ◽  
Marit Sandvei ◽  
Line Støen ◽  
Trine Stensrud ◽  
...  

The purpose of the present study was to investigate training-specific adaptations to eight weeks of moderate intensity continuous training (CT) and sprint interval training (SIT). Young healthy subjects (n = 25; 9 males and 16 females) performed either continuous training (30–60 min, 70–80% peak heart rate) or sprint interval training (5–10 near maximal 30 s sprints, 3 min recovery) three times per week for eight weeks. Maximal oxygen consumption, 20 m shuttle run test and 5·60 m sprint test were performed before and after the intervention. Furthermore, heart rate, oxygen pulse, respiratory exchange ratio, lactate and running economy were assessed at five submaximal intensities, before and after the training interventions. Maximal oxygen uptake increased after CT (before: 47.9 ± 1.5; after: 49.7 ± 1.5 mL·kg−1·min−1, p < 0.05) and SIT (before: 50.5 ± 1.6; after: 53.3 ± 1.5 mL·kg−1·min−1, p < 0.01), with no statistically significant differences between groups. Both groups increased 20 m shuttle run performance and 60 m sprint performance, but SIT performed better than CT at the 4th and 5th 60 m sprint after the intervention (p < 0.05). At submaximal intensities, CT, but not SIT, reduced heart rate (p < 0.05), whereas lactate decreased in both groups. In conclusion, both groups demonstrated similar improvements of several performance measures including VO2max, but sprint performance was better after SIT, and CT caused training-specific adaptations at submaximal intensities.


2020 ◽  
Vol 9 (1) ◽  
pp. 10-16
Author(s):  
Dalynn T. Badenhop ◽  
Meghan M. Long ◽  
C. Matt Laurent ◽  
K. Todd Keylock

ABSTRACT Background: Past research has compared the effects of moderate-intensity continuous training (MCT) versus high-intensity interval training (HIIT) in phase 2 cardiac rehabilitation patients, but with conflicting results. Therefore, the purpose of this study was to evaluate if HIIT leads to greater improvements in functional capacity when compared with MCT in a group of phase 2 cardiac rehabilitation patients. Methods: Eighteen patients in a phase 2 cardiac rehabilitation program completed precardiopulmonary and postcardiopulmonary exercise tests, a 12-min walk test (12MWT), and resting blood pressure (BP). After 2 weeks of run-in, patients were randomly assigned to 10 weeks of HIIT (alternating periods of 80%–90% heart rate [HR] reserve and 60%–70% HR reserve) or MCT (60%–80% HR reserve) exercise group. Changes in VO2 peak, 12MWT distance, and BP (mm Hg) were analyzed by independent t test. Results: The average patient was 65 years old, 1.75 m tall, and overweight. VO2 peak values improved for individuals in both exercise modalities. There was no significant difference between the exercise groups (P = 0.174). In addition, both groups improved their 12MWT distance, resting systolic, and diastolic BP (DBP), with no significant difference in improvements between the 2 exercise groups. Conclusion: In this study, HIIT was not more effective than MCT for improving functional capacity in a group of phase 2 cardiac rehabilitation patients. However, since HIIT was equally effective compared with MCT in several measures, it provides another option for exercise prescription to the traditional prescription for this population.


2017 ◽  
Vol 12 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Laurent Trincat ◽  
Xavier Woorons ◽  
Grégoire P. Millet

Purpose:Repeated-sprint training in hypoxia (RSH) has been shown as an efficient method for improving repeated-sprint ability (RSA) in team-sport players but has not been investigated in swimming. We assessed whether RSH with arterial desaturation induced by voluntary hypoventilation at low lung volume (VHL) could improve RSA to a greater extent than the same training performed under normal breathing (NB) conditions.Methods:Sixteen competitive swimmers completed 6 sessions of repeated sprints (2 sets of 16 × 15 m with 30 s send-off) either with VHL (RSH-VHL, n = 8) or with NB (RSN, n = 8). Before and after training, performance was evaluated through an RSA test (25-m all-out sprints with 35 s send-off) until exhaustion.Results:From before to after training, the number of sprints was significantly increased in RSH-VHL (7.1 ± 2.1 vs 9.6 ± 2.5; P < .01) but not in RSN (8.0 ± 3.1 vs 8.7 ± 3.7; P = .38). Maximal blood lactate concentration ([La]max) was higher after than before in RSH-VHL (11.5 ± 3.9 vs 7.9 ± 3.7 mmol/L; P = .04) but was unchanged in RSN (10.2 ± 2.0 vs 9.0 ± 3.5 mmol/L; P = .34). There was a strong correlation between the increases in the number of sprints and in [La]max in RSH-VHL only (R = .93, P < .01).Conclusions:RSH-VHL improved RSA in swimming, probably through enhanced anaerobic glycolysis. This innovative method allows inducing benefits normally associated with hypoxia during swim training in normoxia.


2000 ◽  
Vol 89 (6) ◽  
pp. 2283-2293 ◽  
Author(s):  
Raymond J. Geor ◽  
Laura Jill McCutcheon ◽  
Gayle L. Ecker ◽  
Michael I. Lindinger

The effect of humid heat acclimation on thermoregulatory responses to humid and dry exercise-heat stress was studied in six exercise-trained Thoroughbred horses. Horses were heat acclimated by performing moderate-intensity exercise for 21 days in heat and humidity (HH) [34.2–35.7°C; 84–86% relative humidity (RH); wet bulb globe temperature (WBGT) index ∼32°C]. Horses completed exercise tests at 50% of peak O2 uptake until a pulmonary arterial temperature (Tpa) of 41.5°C was attained in cool dry (CD) (20–21.5°C; 45–50% RH; WBGT ∼16°C), hot dry (HD 0) [32–34°C room temperature (RT); 45–55% RH; WBGT ∼25°C], and HH conditions (HH 0), and during the second hour of HH on days 3, 7, 14, and 21, and in HD on the 18th day (HD 18) of heat acclimation. The ratios of required evaporative capacity to maximal evaporative capacity of the environment (Ereq/Emax) for CD, HD, and HH were ∼1.2, 1.6, and 2.5, respectively. Preexercise Tpa and rectal temperature were ∼0.5°C lower ( P < 0.05) on days 7, 14, and 21 compared with day 0. With exercise in HH, there was no effect of heat acclimation on the rate of rise in Tpa (and therefore exercise duration) nor the rate of heat storage. In contrast, exercise duration was longer, rate of rise in Tpa was significantly slower, and rate of heat storage was decreased on HD 18 compared with HD 0. It was concluded that, during uncompensable heat stress in horses, heat acclimation provided modest heat strain advantages when Ereq/Emax was ∼1.6, but at higher Ereq/Emax no advantages were observed.


2014 ◽  
Vol 307 (7) ◽  
pp. R920-R930 ◽  
Author(s):  
James Kelly ◽  
Anni Vanhatalo ◽  
Stephen J. Bailey ◽  
Lee J. Wylie ◽  
Christopher Tucker ◽  
...  

We investigated the effects of dietary nitrate (NO3−) supplementation on the concentration of plasma nitrite ([NO2−]), oxygen uptake (V̇o2) kinetics, and exercise tolerance in normoxia (N) and hypoxia (H). In a double-blind, crossover study, 12 healthy subjects completed cycle exercise tests, twice in N (20.9% O2) and twice in H (13.1% O2). Subjects ingested either 140 ml/day of NO3−-rich beetroot juice (8.4 mmol NO3; BR) or NO3−-depleted beetroot juice (PL) for 3 days prior to moderate-intensity and severe-intensity exercise tests in H and N. Preexercise plasma [NO2−] was significantly elevated in H-BR and N-BR compared with H-PL ( P < 0.01) and N-PL ( P < 0.01). The rate of decline in plasma [NO2−] was greater during severe-intensity exercise in H-BR [−30 ± 22 nM/min, 95% confidence interval (CI); −44, −16] compared with H-PL (−7 ± 10 nM/min, 95% CI; −13, −1; P < 0.01) and in N-BR (−26 ± 19 nM/min, 95% CI; −38, −14) compared with N-PL (−1 ± 6 nM/min, 95% CI; −5, 2; P < 0.01). During moderate-intensity exercise, steady-state pulmonary V̇o2 was lower in H-BR (1.91 ± 0.28 l/min, 95% CI; 1.77, 2.13) compared with H-PL (2.05 ± 0.25 l/min, 95% CI; 1.93, 2.26; P = 0.02), and V̇o2 kinetics was faster in H-BR (τ: 24 ± 13 s, 95% CI; 15, 32) compared with H-PL (31 ± 11 s, 95% CI; 23, 38; P = 0.04). NO3− supplementation had no significant effect on V̇o2 kinetics during severe-intensity exercise in hypoxia, or during moderate-intensity or severe-intensity exercise in normoxia. Tolerance to severe-intensity exercise was improved by NO3− in hypoxia (H-PL: 197 ± 28; 95% CI; 173, 220 vs. H-BR: 214 ± 43 s, 95% CI; 177, 249; P = 0.04) but not normoxia. The metabolism of NO2− during exercise is altered by NO3− supplementation, exercise, and to a lesser extent, hypoxia. In hypoxia, NO3− supplementation enhances V̇o2 kinetics during moderate-intensity exercise and improves severe-intensity exercise tolerance. These findings may have important implications for individuals exercising at altitude.


2017 ◽  
Vol 122 (3) ◽  
pp. 642-652 ◽  
Author(s):  
Christopher Thompson ◽  
Lee J. Wylie ◽  
Jamie R. Blackwell ◽  
Jonathan Fulford ◽  
Matthew I. Black ◽  
...  

We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR ( P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL ( P < 0.05) or NT+BR ( P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR ( P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL ( P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only ( P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.


2011 ◽  
Vol 110 (3) ◽  
pp. 591-600 ◽  
Author(s):  
Katherine E. Lansley ◽  
Paul G. Winyard ◽  
Jonathan Fulford ◽  
Anni Vanhatalo ◽  
Stephen J. Bailey ◽  
...  

Dietary supplementation with beetroot juice (BR) has been shown to reduce resting blood pressure and the O2cost of submaximal exercise and to increase tolerance to high-intensity cycling. We tested the hypothesis that the physiological effects of BR were consequent to its high NO3−content per se, and not the presence of other potentially bioactive compounds. We investigated changes in blood pressure, mitochondrial oxidative capacity (Qmax), and physiological responses to walking and moderate- and severe-intensity running following dietary supplementation with BR and NO3−-depleted BR [placebo (PL)]. After control (nonsupplemented) tests, nine healthy, physically active male subjects were assigned in a randomized, double-blind, crossover design to receive BR (0.5 l/day, containing ∼6.2 mmol of NO3−) and PL (0.5 l/day, containing ∼0.003 mmol of NO3−) for 6 days. Subjects completed treadmill exercise tests on days 4 and 5 and knee-extension exercise tests for estimation of Qmax(using31P-magnetic resonance spectroscopy) on day 6 of the supplementation periods. Relative to PL, BR elevated plasma NO2−concentration (183 ± 119 vs. 373 ± 211 nM, P < 0.05) and reduced systolic blood pressure (129 ± 9 vs. 124 ± 10 mmHg, P < 0.01). Qmaxwas not different between PL and BR (0.93 ± 0.05 and 1.05 ± 0.22 mM/s, respectively). The O2cost of walking (0.87 ± 0.12 and 0.70 ± 0.10 l/min in PL and BR, respectively, P < 0.01), moderate-intensity running (2.26 ± 0.27 and 2.10 ± 0.28 l/min in PL and BR, respectively, P < 0.01), and severe-intensity running (end-exercise O2uptake = 3.77 ± 0.57 and 3.50 ± 0.62 l/min in PL and BL, respectively, P < 0.01) was reduced by BR, and time to exhaustion during severe-intensity running was increased by 15% (7.6 ± 1.5 and 8.7 ± 1.8 min in PL and BR, respectively, P < 0.01). In contrast, relative to control, PL supplementation did not alter plasma NO2−concentration, blood pressure, or the physiological responses to exercise. These results indicate that the positive effects of 6 days of BR supplementation on the physiological responses to exercise can be ascribed to the high NO3−content per se.


Author(s):  
Jorge Arede ◽  
Sogand Poureghbali ◽  
Tomás Freitas ◽  
John Fernandes ◽  
Wolfgang I. Schöllhorn ◽  
...  

This pilot study aimed to determine the effects of differential learning in sprint running with and without changes of direction (COD) on physical performance parameters in female basketball players and to determine the feasibility of the training protocol. Nine female basketball players completed 4 weeks of repeated sprint training (RST) with (COD, n = 4) or without (NCOD, n = 5) changes of direction. A battery of sprints (0–10 and 0–25 m), vertical jumps (counter movement jump (CMJ), drop jump, and single-leg CMJs), and COD tests were conducted before and after intervention. NCOD completed two sets of ten sprints of 20 m, whereas COD performed 20 m sprints with a 180 degree turn at 10 m, returning to the starting line. Before each sprint, participants were instructed to provide different fluctuations (i.e., differential learning) in terms of varying the sprint. Both groups had 30 s of passive recovery between two sprints and 3 min between sets. A significant effect of time for the 0–10 m sprint, CMJ, and single leg-CMJ asymmetries were observed. Adding “erroneous” fluctuation during RST seems to be a suitable and feasible strategy for coaches to enhance physical performance in young female basketball players. However, further studies including larger samples and controlled designs are recommended to strengthen present findings.


Sign in / Sign up

Export Citation Format

Share Document