Dual Sensory-Motor Function for a Molluskan Statocyst Network

2004 ◽  
Vol 91 (1) ◽  
pp. 336-345 ◽  
Author(s):  
R. Levi ◽  
P. Varona ◽  
Y. I. Arshavsky ◽  
M. I. Rabinovich ◽  
A. I. Selverston

In mollusks, statocyst receptor cells (SRCs) interact with each other forming a neural network; their activity is determined by both the animal's orientation in the gravitational field and multimodal inputs. These two facts suggest that the function of the statocysts is not limited to sensing the animal's orientation. We studied the role of the statocysts in the organization of search motion during hunting behavior in the marine mollusk, Clione limacina. When hunting, Clione swims along a complex trajectory including numerous twists and turns confined within a definite space. Search-like behavior could be evoked pharmacologically by physostigmine; application of physostigmine to the isolated CNS produced “fictive search behavior” monitored by recordings from wing and tail nerves. Both in behavioral and in vitro experiments, we found that the statocysts are necessary for search behavior. The motor program typical of searching could not be produced after removing the statocysts. Simultaneous recordings from single SRCs and motor nerves showed that there was a correlation between the SRCs activity and search episodes. This correlation occurred even though the preparation was fixed and, therefore the sensory stimulus was constant. The excitation of individual SRCs could in some cases precede the beginning of search episodes. A biologically based model showed that, theoretically, the hunting search motor program could be generated by the statocyst receptor network due to its intrinsic dynamics. The results presented support for the idea that the statocysts are actively involved in the production of the motor program underlying search movements during hunting behavior.

2000 ◽  
Vol 84 (3) ◽  
pp. 1673-1676 ◽  
Author(s):  
T. G. Deliagina ◽  
G. N. Orlovsky ◽  
A. I. Selverston ◽  
Y. I. Arshavsky

The marine mollusk Clione limacina, when swimming, normally stabilizes the vertical body orientation by means of the gravitational tail reflexes. Horizontal swimming or swimming along inclined ascending trajectories is observed rarely. Here we report that GABA injection into intact Clione resulted in a change of the stabilized orientation and swimming with a tilt of ∼45° to the left. The analysis of modifications in the postural network underlying this effect was done with in vitro experiments. The CNS was isolated together with the statocysts. Spike discharges in the axons of two groups of motoneurons responsible for the left and right tail flexion, as well as in the axons of CPB3 interneurons mediating signals from the statocyst receptors to the motoneurons, were recorded extracellularly when the preparation was rotated in space. Normally the tail motoneurons of the left and right groups were activated with the contralateral tilt of the preparation. Under the effect of GABA, the gravitational responses in the right group of motoneurons and in the corresponding interneurons were dramatically reduced while the responses in the left group remained unchanged. The most likely site of the inhibitory GABA action is the interneurons mediating signals from the statocysts to the right group of tail motoneurons. The GABA-induced asymmetry of the left and right gravitational tail reflexes, observed in the in vitro experiments, is consistent with a change of the stabilized orientation caused by GABA in the intact Clione.


1995 ◽  
Vol 73 (5) ◽  
pp. 1912-1923 ◽  
Author(s):  
Y. V. Panchin ◽  
L. B. Popova ◽  
T. G. Deliagina ◽  
G. N. Orlovsky ◽  
Y. I. Arshavsky

1. The pteropod mollusk Clione limacina swims by rhythmical oscillations of two wings, and its spatial orientation during locomotion is determined by tail movements. The majority of neurons responsible for generation of the wing and tail movements are located in the pedal ganglia. On the other hand, the majority of sensory inputs that affect wing and tail movements project to the cerebral ganglia. The goal of the present study was to identify and characterize cerebropedal neurons involved in the control of the swimming central generator or motor neurons of wing and tail muscles. Cerebropedal neurons affecting locomotion-controlling mechanisms are located in the rostromedial (CPA neurons), caudomedial (CPB neurons), and central (CPC neurons) zones of the cerebral ganglia. According to their morphology and effects on pedal mechanisms, 10 groups of the cerebropedal neurons can be distinguished. 2. CPA1 neurons project through the ipsilateral cerebropedal connective to both pedal ganglia. Activation of a CPA1 by current injection resulted in speeding up of the locomotor rhythm and intensification of the firing of the locomotor motor neurons. 3. CPA2 neurons send numerous thin fibers into the ipsi- and contralateral pedal and pleural ganglia through the cerebropedal and cerebropleural connectives. They strongly inhibit the wing muscle motor neurons and, to a lesser extent, slow down the locomotor rhythm. 4. CPB1 neurons project through the contralateral cerebropedal connective to both pedal ganglia. They activate the locomotor generator. 5. CPB2 neurons also project, through the contralateral cerebropedal connective, to both pedal ganglia. They affect wing muscle motor neurons. 6. CPB3 neurons have diverse morphology: they project to the pedal ganglia either through the ipsilateral cerebropedal connective, or through the contralateral one, or through both of them. They affect putative motor neurons of the tail muscles. 7. CPC1, CPC2, and CPC3 neurons project through the ipsilateral cerebropedal connective to both pedal ganglia. They activate the locomotor generator. 8. CPC4 and CPC5 neurons project through the contralateral cerebropedal connective to the contralateral pedal ganglia. They activate the locomotor generator. 9. Serotonergic neurons were mapped in the CNS of Clione by immunohistochemical methods. Location and size of cells in two groups of serotonin-immunoreactive neurons in the cerebral ganglia appeared to be similar to those of CPA1 and CPB1 neurons. This finding suggests a possible mechanism for serotonin's ability to exert a strong excitatory action on the locomotor generator of Clione. 10. The role of different groups of cerebropedal neurons is discussed in relation to different forms of Clione's behavior in which locomotor activity is involved.


1979 ◽  
Vol 73 (6) ◽  
pp. 685-702 ◽  
Author(s):  
W T Clusin ◽  
M V Bennett

Tonic nerve activity in skate electroreceptors is thought to result from spontaneous activity of the lumenal membranes of the receptor cells which is modulated by applied stimuli. When physiological conditions are simulated in vitro, the receptor epithelium produces a current which flows inward across the lumenal surface. This epithelial current exhibits small spontaneous sinusoidal fluctuations about the mean that are associated with corresponding but delayed fluctuations in postsynaptic response. Small voltage stimuli produce damped oscillations in the epithelial current similar in time-course to the spontaneous fluctuations. For lumen-negative, excitatory stimuli, these responses are predominantly an increase over the mean inward current. For inhibitory stimuli they are predominantly a decrease. Increased inward current across the lumenal membranes of the receptor cells increases depolarization of the presynaptic membranes in the basal faces leading to increased release of transmitter and an excitatory postsynaptic response. Decreased inward current decreases depolarization of the presynaptic membranes leading to a reduction in transmitter release and an inhibitory postsynaptic response. Clear changes in postsynaptic response are detectable during stimuli as small as 5 microV with saturation occurring at +/- 400 microV. The evoked oscillations in epithelial current are damped and the postsynaptic responses decline during maintained stimuli with large off-responses occurring at stimulus termination. The initial peak of the off-response is similar to the response produced by onset of an oppositely directed stimulus. These observations substantiate the role of receptor cell excitability in the detection of small voltage changes.


1985 ◽  
Vol 249 (4) ◽  
pp. R417-R423
Author(s):  
F. G. Carpenter

The potentiation of nerve-induced bladder contractions (NIC) by tetraethylammonium chloride (TEA), K+, or carbachol could result from a greater Ca2+ entry through Ca2+ channels in the muscle or from a greater release of transmitter by nerve terminals. Contractions of equal magnitude by the rat urinary bladder in vitro were initiated by carbachol, K+, or transmural stimulation of urinary bladder motor nerves at 1 Hz. Contractions elicited by K+ or carbachol were drastically reduced by verapamil (0.5 microM), but NICs were unaffected. Thus the role of Ca2+ channels in NICs seems uncertain. NICs are potentiated approximately 50% by K+ (15 mM), carbachol (0.5 microM), or 4-aminopyridine (0.2 mM) and over twofold by TEA (5 mM). Although verapamil (1–5 microM) reduced NICs in a dose-dependent relation, potentiation by each compound was the same. Thus Ca2+ channels probably play no role in potentiation. The resistance of the bladder to distention reflects its viscoelasticity and is Ca2+ sensitive. Because viscoelasticity was decreased by verapamil coincident with the reduction in NICs, both may result from lowered intracellular Ca2+ (Cai2+). However, because the potentiating compounds failed to restore bladder viscoelasticity, they probably did not elevate Cai2+. Therefore, in verapamil-treated preparations potentiation is most probably caused by an enhancement of transmitter release.


Author(s):  
Janet H. Woodward ◽  
D. E. Akin

Silicon (Si) is distributed throughout plant tissues, but its role in forages has not been clarified. Although Si has been suggested as an antiquality factor which limits the digestibility of structural carbohydrates, other research indicates that its presence in plants does not affect digestibility. We employed x-ray microanalysis to evaluate Si as an antiquality factor at specific sites of two cultivars of bermuda grass (Cynodon dactvlon (L.) Pers.). “Coastal” and “Tifton-78” were chosen for this study because previous work in our lab has shown that, although these two grasses are similar ultrastructurally, they differ in in vitro dry matter digestibility and in percent composition of Si.Two millimeter leaf sections of Tifton-7 8 (Tift-7 8) and Coastal (CBG) were incubated for 72 hr in 2.5% (w/v) cellulase in 0.05 M sodium acetate buffer, pH 5.0. For controls, sections were incubated in the sodium acetate buffer or were not treated.


Author(s):  
David B. Warheit ◽  
Lena Achinko ◽  
Mark A. Hartsky

There is a great need for the development of a rapid and reliable bioassay to evaluate the pulmonary toxicity of inhaled particles. A number of methods have been proposed, including lung clearance studies, bronchoalveolar lavage analysis, and in vitro cytotoxicity tests. These methods are often limited in scope inasmuch as they measure only one dimension of the pulmonary response to inhaled, instilled or incubated dusts. Accordingly, a comprehensive approach to lung toxicity studies has been developed.To validate the method, rats were exposed for 6 hours or 3 days to various concentrations of either aerosolized alpha quartz silica (Si) or carbonyl iron (CI) particles. Cells and fluids from groups of sham and dust-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, LDH and protein values were measured in BAL fluids at several time points postexposure. Cells were counted and evaluated for viability, as well as differential and cytochemical analysis. In addition, pulmonary macrophages (PM) were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1999 ◽  
Vol 81 (06) ◽  
pp. 951-956 ◽  
Author(s):  
J. Corral ◽  
R. González-Conejero ◽  
J. Rivera ◽  
F. Ortuño ◽  
P. Aparicio ◽  
...  

SummaryThe variability of the platelet GP Ia/IIa density has been associated with the 807 C/T polymorphism (Phe 224) of the GP Ia gene in American Caucasian population. We have investigated the genotype and allelic frequencies of this polymorphism in Spanish Caucasians. The T allele was found in 35% of the 284 blood donors analyzed. We confirmed in 159 healthy subjects a significant association between the 807 C/T polymorphism and the platelet GP Ia density. The T allele correlated with high number of GP Ia molecules on platelet surface. In addition, we observed a similar association of this polymorphism with the expression of this protein in other blood cell types. The platelet responsiveness to collagen was determined by “in vitro” analysis of the platelet activation and aggregation response. We found no significant differences in these functional platelet parameters according to the 807 C/T genotype. Finally, results from 3 case/control studies involving 302 consecutive patients (101 with coronary heart disease, 104 with cerebrovascular disease and 97 with deep venous thrombosis) determined that the 807 C/T polymorphism of the GP Ia gene does not represent a risk factor for arterial or venous thrombosis.


Sign in / Sign up

Export Citation Format

Share Document