Spatial Representation of Hydrocarbon Odorants in the Ventrolateral Zones of the Rat Olfactory Bulb

2005 ◽  
Vol 93 (2) ◽  
pp. 1007-1019 ◽  
Author(s):  
Kei M. Igarashi ◽  
Kensaku Mori

The glomerular sheet of the olfactory bulb (OB) forms odorant receptor maps that are parceled into zones. We previously reported the molecular receptive range (MRR) property of individual glomeruli in the dorsal zone (zone 1) of the OB and showed that polar functional groups play a major role in activating glomeruli in this zone. However, the MRR property of glomeruli in zones 2–4 is not well understood yet. Using the method of intrinsic signal imaging, we recorded odorant-induced glomerular activity from the ventrolateral surface (zones 2–4) of rat OB. While hydrocarbon odorants that lack polar functional groups activate only a few glomeruli in zone 1, we found that a series of hydrocarbon odorants consistently activated many glomeruli in the ventrolateral surface. The hydrocarbon-responsive glomeruli were grouped into two clusters; glomeruli in one cluster (cluster H) responded to benzene-family hydrocarbons but not to cyclic terpene hydrocarbons. Glomeruli in the other cluster (cluster I) responded to both classes of hydrocarbons. Detailed analyses of MRR properties of individual glomeruli using hydrocarbon odorants and polar-functional-group-containing odorants showed that the common and characteristic molecular features effective in activating glomeruli in the clusters H and I are the hydrocarbon skeleton. These results suggest that ORs represented by glomeruli in these clusters recognize primarily the hydrocarbon skeleton of odorants, and thus imply a systematic difference in the manner of recognizing odorant molecular features between ORs in zone 1 and ORs in zones 2–4.

2004 ◽  
Vol 92 (4) ◽  
pp. 2413-2427 ◽  
Author(s):  
Yuji K. Takahashi ◽  
Masahide Kurosaki ◽  
Shuichi Hirono ◽  
Kensaku Mori

Individual glomeruli in the mammalian olfactory bulb (OB) most probably represent a single odorant receptor (OR). The assembly of glomeruli thus forms the maps of ORs. How is the approximately 1,000 ORs represented spatially in the glomerular map? Using the method of optical imaging of intrinsic signals and systematic panels of stimulus odorants, we recorded odorant-induced glomerular activity from the dorsal and dorsolateral areas of the rat OB, and examined the molecular receptive range (MRR) of individual glomeruli. We then deduced the characteristic molecular features that were shared by odorants effective in activating individual glomeruli. Analysis of the spatial representation of the MRR showed that glomeruli with similar MRRs gathered in close proximity and formed molecular feature clusters and subclusters. Although the shape of the clusters varied among different OBs, the clusters were arranged at stereotypical positions in relation to the zonal organization of the OB. Examination of the spatial representation of the characteristic molecular features of odorants using structurally semirigid aromatic compounds suggest a systematic and gradual change in the characteristic molecular features according to the position of subclusters in the map. The topographic map of the characteristic molecular features may reflect a systematic spatial representation of the ORs and may participate in the neural bases for the odorant structure–odor quality relationship.


2006 ◽  
Vol 86 (2) ◽  
pp. 409-433 ◽  
Author(s):  
Kensaku Mori ◽  
Yuji K. Takahashi ◽  
Kei M. Igarashi ◽  
Masahiro Yamaguchi

The olfactory bulb (OB) is the first relay station of the central olfactory system in the mammalian brain and contains a few thousand glomeruli on its surface. Because individual glomeruli represent a single odorant receptor, the glomerular sheet of the OB forms odorant receptor maps. This review summarizes the emerging view of the spatial organization of the odorant receptor maps. Recent studies suggest that individual odorant receptors are molecular-feature detecting units, and so are individual glomeruli in the OB. How are the molecular-feature detecting units spatially arranged in the glomerular sheet? To characterize the molecular-feature specificity of an individual glomerulus, it is necessary to determine the molecular receptive range (MRR) of the glomerulus and to compare the molecular structure of odorants within the MRR. Studies of the MRR mapping show that 1) individual glomeruli typically respond to a range of odorants that share a specific combination of molecular features, 2) each glomerulus appears to be unique in its MRR property, and 3) glomeruli with similar MRR properties gather together in proximity and form molecular-feature clusters. The molecular-feature clusters are located at stereotypical positions in the OB and might be part of the neural representation of basic odor quality. Detailed studies suggest that the glomerular sheet represents the characteristic molecular features in a systematic, gradual, and multidimensional fashion. The molecular-feature maps provide a basis for understanding how the olfactory cortex reads the odor maps of the OB.


2018 ◽  
Vol 15 (3) ◽  
pp. 541-548
Author(s):  
Sholeh Maslehat ◽  
Soroush Sardari ◽  
Mahboube Ganji Arjenaki

Small molecules are composed of chemical functional groups; they are sets of connected atoms or atom groups that determine properties and reactivity of the parent molecule. DrugBank is a rich source of information that containing molecular data about small molecules, their mechanisms, pharmaceutical interaction and targets. In this study, After collecting data of small drug molecules from DrugBank database and classifying them in different categories based on their mechanism of action, the therapeutic properties of the molecules were recorded. Finally, the functional group from the pharmaceutical structures were elucidated and registered for each group. The functional groups were divided into five distinct groups in drug design, and a correlation between identified functional group to pharmaceutical structure were indicated according to the classified functional groups of small molecule and drug categories; then defined their frequency in categories, at high abundant functional group present in categories reported. The most frequent rings were benzene and cyclohexane; the common acid functionality had been acetate (carboxy-); three most repeated saturated heterocyles are piperidine, piperazine and azetidine; among the unsaturated heterocyles, pyridine, imidazole and indole are noticed; This database, that may be guidance for researchers with the aim at designing new drugs.


2020 ◽  
Author(s):  
Shunya Ohuchi ◽  
Hiroki Koyama ◽  
Hiroki Shigehisa

A catalytic synthesis of cyclic guanidines, which are found in many biologically active compounds and natu-ral products, was developed, wherein transition-metal hydrogen atom transfer and radical-polar crossover were employed. This mild and functional-group tolerant process enabled the cyclization of alkenyl guanidines bearing common protective groups, such as Cbz and Boc. This powerful method not only provided the common 5- and 6-membered rings but also an unusual 7-membered ring. The derivatization of the products afforded various heterocycles. We also investigated the se-lective cyclization of mono-protected or hetero-protected (TFA and Boc) alkenyl guanidines and their further derivatiza-tions.


2021 ◽  
Vol 7 (5) ◽  
pp. 333
Author(s):  
Lourdes Morillas ◽  
Javier Roales ◽  
Cristina Cruz ◽  
Silvana Munzi

Lichens are classified into different functional groups depending on their ecological and physiological response to a given environmental stressor. However, knowledge on lichen response to the synergistic effect of multiple environmental factors is extremely scarce, although vital to get a comprehensive understanding of the effects of global change. We exposed six lichen species belonging to different functional groups to the combined effects of two nitrogen (N) doses and direct sunlight involving both high temperatures and ultraviolet (UV) radiation for 58 days. Irrespective of their functional group, all species showed a homogenous response to N with cumulative, detrimental effects and an inability to recover following sunlight, UV exposure. Moreover, solar radiation made a tolerant species more prone to N pollution’s effects. Our results draw attention to the combined effects of global change and other environmental drivers on canopy defoliation and tree death, with consequences for the protection of ecosystems.


2007 ◽  
Vol 119 ◽  
pp. 211-214 ◽  
Author(s):  
Byeoung Ku Kim ◽  
Young Seak Lee ◽  
Seung Kon Ryu ◽  
Byung Joo Kim ◽  
Soo Jin Park

In this work, to introduce polar functional groups on carbon surfaces, activated carbon fibers (ACFs) were treated by nitric acid in order to enhance the adsorption capacity of propylamine which was one of toxic gases in cigarette smoke. It was found that the polar functional groups were predominantly increased up to 2.0 M of nitric acid, resulting in the increase of total surface acidity. It was found that the adsorption amount of propylamine of the modified ACFs was increased around 17% after a nitric acid treatment. From the XPS results, it was observed that propylamine was reacted with strong or weak polar (acidic) groups, such as COOH, -COO or OH existed on the ACF surfaces.


Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2425-2428 ◽  
Author(s):  
Bill Morandi ◽  
Yong Lee

We report that a Lewis acidic silane, Me2SiHCl, can mediate the direct cross-coupling of a wide range of carbonyl compounds with alcohols to form dialkyl ethers. The reaction is operationally simple, tolerates a range of polar functional groups, can be utilized to make sterically hindered ethers, and is extendable to sulfur and nitrogen nucleo­philes.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Sutthisa Konruang ◽  
Thawat Chittrakarn ◽  
Suksawat Sirijarukul

The effects of ultraviolet (UV) irradiation for surface modification of hydrophobic asymmetric polysulfone membranes have been investigated. The asymmetric polysulfone (PSF) membranes were prepared by phase inversion method using 19%-25% of PSF in two solvents, viz. dimethylacetamide (DMF) and Acetone (Ac) collectively. The surface of asymmetric polysulfone membranes were modified by UV ray with 254 and 312 nm wavelength. Chemical and physical properties of the untreated and the treated membranes were characterized. Scanning electron microscope (SEM) was used to determine asymmetric structure of polysulfone membranes. Contact angle device was used to analyzed the effected of UV ray treatment on hydrophilicity of membranes surface. Polar functional groups introduced by UV irradiation were examined using FTIR. The water flux was measured under a pressure of 500 kPa to 2,500 kPa with a feed temperature of 25°C. It was shown that asymmetric polysulfone membranes were produced and the UV ray treatment significantly alters the hydrophilicity of membranes surface indicated by the reduction of water contact angle with increasing treatment time. The FTIR analysis showed the formations of polar functional groups such as hydroxyl and carbonyl groups. Consequently, the surface of asymmetric polysulfone membranes was changed from hydrophobic to hydrophilic by UV irradiation leading to the enhancement of the water flux.


Sign in / Sign up

Export Citation Format

Share Document