scholarly journals Rapid Rise of Extracellular pH Evoked by Neural Activity Is Generated by the Plasma Membrane Calcium ATPase

2010 ◽  
Vol 103 (2) ◽  
pp. 667-676 ◽  
Author(s):  
Sachin Makani ◽  
Mitchell Chesler

In hippocampus, synchronous activation of CA1 pyramidal neurons causes a rapid, extracellular, population alkaline transient (PAT). It has been suggested that the plasma membrane Ca2+-ATPase (PMCA) is the source of this alkalinization, because it exchanges cytosolic Ca2+ for external H+. Evidence supporting this hypothesis, however, has thus far been inconclusive. We addressed this long-standing problem by measuring surface alkaline transients (SATs) from voltage-clamped CA1 pyramidal neurons in juvenile mouse hippocampal slices, using concentric (high-speed, low-noise) pH microelectrodes placed against the somata. In saline containing benzolamide (a poorly permeant carbonic anhydrase blocker), a 2-s step from −60 to 0 mV caused a mean SAT of 0.02 unit pH. Addition of 5 mM HEPES to the artificial cerebrospinal fluid diminished the SAT by 91%. Nifedipine reduced the SAT by 53%. Removal of Ca2+ from the saline abolished the SAT, and addition of BAPTA to the patch pipette reduced it by 79%. The inclusion of carboxyeosin (a PMCA inhibitor) in the pipette abolished the SAT, whether it was induced by a depolarizing step, or by simulated, repetitive, antidromic firing. The peak amplitude of the “antidromic” SAT of a single cell averaged 11% of the PAT elicited by comparable real antidromic activation of the CA1 neuronal population. Caloxin 2A1, an extracellular PMCA peptide inhibitor, blocked both the SAT and PAT by 42%. These results provide the first direct evidence that the PMCA can explain the extracellular alkaline shift elicited by synchronous firing.

2010 ◽  
Vol 104 (3) ◽  
pp. 1438-1444 ◽  
Author(s):  
Sachin Makani ◽  
Mitchell Chesler

In many brain regions, synchronous neural activity causes a rapid rise in extracellular pH. In the CA1 region of hippocampus, this population alkaline transient (PAT) enhances responses from postsynaptic, pH-sensitive N-methyl-d-aspartate (NMDA) receptors. Recently, we showed that the plasma membrane Ca2+-ATPase (PMCA), a ubiquitous transporter that exchanges internal Ca2+ for external H+, is largely responsible for the PAT. It has also been shown that a PAT can be generated after replacing extracellular Ca2+ with Ba2+. The cause of this PAT is unknown, however, because the ability of the mammalian PMCA to transport Ba2+ is unclear. If the PMCA did not carry Ba2+, a different alkalinizing source would have to be postulated. Here, we address this issue in mouse hippocampal slices, using concentric (high-speed, low-noise) pH microelectrodes. In Ba2+-containing, Ca2+-free artificial cerebrospinal fluid, a single antidromic shock to the alveus elicited a large (0.1–0.2 unit pH), “all-or-none” PAT in the CA1 cell body region. In whole cell current clamp of single CA1 pyramidal neurons, the same stimulus evoked a prolonged plateau potential that was similarly all-or-none. Using this plateau as the voltage command in other cells, we recorded Ba2+-dependent surface alkaline transients (SATs). The SATs were suppressed by adding 5 mM extracellular HEPES and abolished when carboxyeosin (a PMCA inhibitor) was in the patch pipette solution. These results suggest that the PAT evoked in the presence of Ba2+ is caused by the PMCA and that this transporter is responsible for the PAT whether Ca2+ or Ba2+ is the charge carrying divalent cation.


1998 ◽  
Vol 79 (6) ◽  
pp. 3252-3256 ◽  
Author(s):  
Paola Pedarzani ◽  
Michael Krause ◽  
Trude Haug ◽  
Johan F. Storm ◽  
Walter Stühmer

Pedarzani, Paola, Michael Krause, Trude Haug, Johan F. Storm, and Walter Stühmer. Modulation of the Ca2+-activated K+ current s I AHP by a phosphatase-kinase balance under basal conditions in rat CA1 pyramidal neurons. J. Neurophysiol. 79: 3252–3256, 1998. The slow Ca2+-activated K+ current, s I AHP, underlying spike frequency adaptation, was recorded with the whole cell patch-clamp technique in CA1 pyramidal neurons in rat hippocampal slices. Inhibitors of serine/threonine protein phosphatases (microcystin, calyculin A, cantharidic acid) caused a gradual decrease of s I AHP amplitude, suggesting the presence of a basal phosphorylation-dephosphorylation turnover regulating s I AHP. Because selective calcineurin (PP-2B) inhibitors did not affect the amplitude of s I AHP, protein phosphatase 1 (PP-1) or 2A (PP-2A) are most likely involved in the basal regulation of this current. The ATP analogue, ATP-γ-S, caused a gradual decrease in the s I AHP amplitude, supporting a role of protein phosphorylation in the basal modulation of s I AHP. When the protein kinase A (PKA) inhibitor adenosine-3′,5′-monophosphorothioate, Rp-isomer (Rp-cAMPS) was coapplied with the phosphatase inhibitor microcystin, it prevented the decrease in the s I AHP amplitude that was observed when microcystin alone was applied. Furthermore, inhibition of PKA by Rp-cAMPS led to an increase in the s I AHP amplitude. Finally, an adenylyl cyclase inhibitor (SQ22,536) and adenosine 3′,5′-cyclic monophosphate-specific type IV phosphodiesterase inhibitors (Ro 20–1724 and rolipram) led to an increase or a decrease in the s I AHP amplitude, respectively. These findings suggest that a balance between basally active PKA and a phosphatase (PP-1 or PP-2A) is responsible for the tonic modulation of s I AHP, resulting in a continuous modulation of excitability and firing properties of hippocampal pyramidal neurons.


2002 ◽  
Vol 88 (1) ◽  
pp. 107-116 ◽  
Author(s):  
David R. Ireland ◽  
Wickliffe C. Abraham

Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP3)-activated Ca2+ stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP3-independent transduction pathway.


2018 ◽  
Author(s):  
Hyowon Chung ◽  
Kyerl Park ◽  
Hyun Jae Jang ◽  
Michael M Kohl ◽  
Jeehyun Kwag

AbstractAbnormal accumulation of amyloid β oligomers (AβO) is a hallmark of Alzheimer’s disease (AD), which leads to learning and memory deficits. Hippocampal theta oscillations that are critical in spatial navigation, learning and memory are impaired in AD. Since GABAergic interneurons, such as somatostatin-positive (SST+) and parvalbumin-positive (PV+) interneurons, are believed to play key roles in the hippocampal oscillogenesis, we asked whether AβO selectively impairs these SST+ and PV+ interneurons. To selectively manipulate SST+ or PV+ interneuron activity in mice with AβO pathologyin vivo, we co-injected AβO and adeno-associated virus (AAV) for expressing floxed channelrhodopsin-2 (ChR2) into the hippocampus of SST-Cre or PV-Cre mice. Local field potential (LFP) recordingsin vivoin these AβO–injected mice showed a reduction in the peak power of theta oscillations and desynchronization of spikes from CA1 pyramidal neurons relative to theta oscillations compared to those in control mice. Optogenetic-activation of SST+ but not PV+ interneurons in AβO–injected mice fully restored the peak power of theta oscillations and resynchronized the theta spike phases to a level observed in control mice.In vitrowhole-cell voltage-clamp recordings in CA1 pyramidal neurons in hippocampal slices treated with AβO revealed that short-term plasticity of SST+ interneuron inhibitory inputs to CA1 pyramidal neurons at theta frequency were selectively disrupted while that of PV+ interneuron inputs were unaffected. Together, our results suggest that dysfunction in inputs from SST+ interneurons to CA1 pyramidal neurons may underlie the impairment of theta oscillations observed in AβO-injected micein vivo.Our findings identify SST+ interneurons as a target for restoring theta-frequency oscillations in early AD.


2016 ◽  
Vol 40 (6) ◽  
pp. 1274-1288 ◽  
Author(s):  
Ting Ju ◽  
Yuru Li ◽  
Xiaoran Wang ◽  
Lifeng Xiao ◽  
Li Jiang ◽  
...  

Background: Streptozotocin (STZ) has served as an agent to generate an Alzheimer's disease (AD) model in rats, while edaravone (EDA), a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs), AMPAR-mediated eEPSCs (eEPSCsAMPA), evoked inhibitory postsynaptic currents (eIPSCs), evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR) and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR), it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM) significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM) attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.


2005 ◽  
Vol 94 (6) ◽  
pp. 4121-4130 ◽  
Author(s):  
Ning Kang ◽  
Jun Xu ◽  
Qiwu Xu ◽  
Maiken Nedergaard ◽  
Jian Kang

A paroxysmal depolarization shift (PDS) has been suggested to be a hallmark for epileptic activity in partial-onset seizures. By monitoring membrane potentials and currents in pairs of pyramidal neurons and astrocytes with dual patch-clamp recording and exocytosis of vesicles from astrocytes with two-photon laser scanning microscopy in hippocampal slices, we found that infusion of inositol 1,4,5-trisphosphate (IP3) into astrocytes by patch pipettes induced astrocytic glutamate release that triggered a transient depolarization (TD) and epileptiform discharges in CA1 pyramidal neurons. The TD is due to a tetrodotoxin (TTX)-insensitive slowly decaying transient inward current (STC). Astrocytic glutamate release simultaneously triggers both the STC in pyramidal neurons and a transport current (TC) in astrocytes. The neuronal STC is mediated by ionotropic glutamate receptors leading to the TD and epileptiform discharges; while the astrocytic TC is a glutamate reuptake current resulting from transporting released glutamate into the patched astrocyte. Fusion of a large vesicle in astrocytes was immediately followed by an astrocytic TC, suggesting that the fused vesicle contains glutamate. Both fusion of large vesicles and astrocytic TCs were blocked by tetanus toxin (TeNT), suggesting that astrocytic glutamate release is via SNARE-dependent exocytosis of glutamate-containing vesicles. In the presence of TTX, the epileptogenic reagent, 4-AP, also induced similar neuronal STCs and astrocytic TCs, suggesting that astrocytic glutamate release may play an epileptogenic role in initiation of epileptic seizures under pathological conditions. Our study provides a novel mechanism, astrocytic release of glutamate, for seizure initiation.


2009 ◽  
Vol 101 (2) ◽  
pp. 1016-1032 ◽  
Author(s):  
Marc Fischer ◽  
Julia Reuter ◽  
Florian J. Gerich ◽  
Belinda Hildebrandt ◽  
Sonja Hägele ◽  
...  

Rett syndrome is a neurodevelopmental disorder caused by mutations in the X-chromosomal MECP2 gene encoding for the transcriptional regulator methyl CpG binding protein 2 (MeCP2). Rett patients suffer from episodic respiratory irregularities and reduced arterial oxygen levels. To elucidate whether such intermittent hypoxic episodes induce adaptation/preconditioning of the hypoxia-vulnerable hippocampal network, we analyzed its responses to severe hypoxia in adult Rett mice. The occurrence of hypoxia-induced spreading depression (HSD)—an experimental model for ischemic stroke—was hastened in Mecp2− /y males. The extracellular K+ rise during HSD was attenuated in Mecp2− /y males and the input resistance of CA1 pyramidal neurons decreased less before HSD onset. CA1 pyramidal neurons were smaller and more densely packed, but the cell swelling during HSD was unaffected. The intrinsic optical signal and the propagation of HSD were similar among the different genotypes. Basal synaptic function was intact, but Mecp2− /y males showed reduced paired-pulse facilitation and higher field potential/fiber volley ratios, but no increased seizure susceptibility. Synaptic failure during hypoxia was complete in all genotypes and the final degree of posthypoxic synaptic recovery indistinguishable. Cellular ATP content was normal in Mecp2− /y males, but their hematocrit was increased as was HIF-1α expression throughout the brain. This is the first study showing that in Rett syndrome, the susceptibility of telencephalic neuronal networks to hypoxia is increased; the underlying molecular mechanisms apparently involve disturbed K+ channel function. Such an increase in hypoxia susceptibility may potentially contribute to the vulnerability of male Rett patients who are either not viable or severely disabled.


2021 ◽  
Author(s):  
Pablo Vergara ◽  
Gabriela Pino ◽  
Jorge Vera ◽  
Magdalena Sanhueza

Prolonged changes in neural activity trigger homeostatic synaptic plasticity (HSP) allowing neuronal networks to operate in functional ranges. Cell-wide or input-specific adaptations can be induced by pharmacological or genetic manipulations of activity, and by sensory deprivation. Reactive functional changes caused by deafferentation may partially share mechanisms with HSP. Acute hippocampal slices constitute a suitable model to investigate relatively rapid (hours) pathway-specific modifications occurring after denervation and explore the underlying mechanisms. As Schaffer collaterals constitute a major glutamatergic input to CA1 pyramidal neurons, we conducted whole-cell recordings of miniature excitatory postsynaptic currents (mEPSCs) to evaluate changes over 12 hours after slice preparation and CA3 dissection. We observed an increment in mEPSCs amplitude and a decrease in decay time, suggesting synaptic AMPA receptor upregulation and subunit content modifications. Sorting mEPSC by rise time, a correlate of synapse location along dendrites, revealed amplitude raises at two separate domains. A specific frequency increase was observed in the same domains and was accompanied by a global, unspecific raise. Amplitude and frequency increments were lower at sites initially more active, consistent with local compensatory processes. Transient preincubation with a specific Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor either blocked or occluded amplitude and frequency upregulation in different synapse populations. Results are consistent with the concurrent development of different known CaMKII-dependent HSP processes. Our observations support that deafferentation causes rapid and diverse compensations resembling classical slow forms of adaptation to inactivity. These results may contribute to understand fast-developing homeostatic or pathological events after brain injury.


1988 ◽  
Vol 66 (6) ◽  
pp. 841-844 ◽  
Author(s):  
B. R. Sastry ◽  
J. W. Goh ◽  
P. B. Y. May ◽  
S. S. Chirwa

In guinea pig hippocampal slices, stimulation of stratum radiatum during depolarization (with intracellular current injections) of nonspiking cells (presumed to be glia) in the apical dendritic area of CA1 pyramidal neurons resulted in a subsequent long-term potentiation of intracellularly recorded excitatory postsynaptic potentials as well as extracellularly recorded population spikes in the CA1 area. Tetanic stimulation of stratum radiatum resulted in a subsequent prolonged depolarization of the presumed glial cells, and this depolarization was smaller when the tetanus was given during the presence of 2-amino-5-phosphonovalerate or when the slices were exposed to Ca2+-free medium containing Mn2+ and Mg2+. These results suggest that glial depolarization is involved as one of the steps in generating long-term potentiation.


Sign in / Sign up

Export Citation Format

Share Document