In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes

1987 ◽  
Vol 57 (6) ◽  
pp. 1639-1668 ◽  
Author(s):  
J. Farley ◽  
D. L. Alkon

Cumulative depolarization of Hermissenda type B photoreceptors, a short-term neural correlate of associative learning, was produced by simulating associative training in the isolated nervous system (in vitro conditioning). This simulation entailed stimulation and recording from three classes of neurons normally affected by the associative training procedure: a type B photoreceptor, the silent/excitatory (S/E) optic ganglion cell, and a statocyst caudal hair cell. Exposure of the isolated nervous system to five simultaneous pairings of light and current-induced impulse activity of the caudal hair cell resulted in an average 10-mV depolarization of type B cells. Cumulative depolarization was found to be pairing specific, to occur with a minimal number of training trials, and was paralleled by short-term pairing-specific changes in phototactic behavior for the intact animal. Two important determinants of cumulative depolarization were found to be the magnitude and duration of the long-lasting depolarization (LLD) response of type B cells to light, and a pairing-specific synaptic facilitation of the LLD response. The synaptic facilitation arose from two distinct sources: increased excitatory postsynaptic potential (EPSP) feedback on B cells following light and caudal hair cell stimulation pairings, and disinhibition of the type B photoreceptor following pairings. The S/E optic ganglion cell was found to be a potent regulator of B cell EPSPs. Cumulative depolarization was substantially reduced when the S/E cell was hyperpolarized throughout the course of pairings. Conversely, pairings of light with depolarizing current stimulation of the S/E cell were sufficient to produce cumulative depolarization of B cells. Precluding disinhibition of the B cell from the caudal hair cell was also found to attenuate cumulative depolarization. Additional constraints, inherent to the neural organization of the visual and statocyst neural systems were found to further limit the degree of cumulative depolarization. Among the most important of these were the interpairing interval and light intensity. Exposure of intact animals of five pairings of light and rotation resulted in short-term suppression of phototactic behavior. Like the cumulative depolarization of B cells with in vitro conditioning procedures, these changes were relatively pairing specific and persisted for comparable durations of time. Cumulative depolarization of B cells appears to be an important initial step in the production of long-term associative neural and behavioral changes in Hermissenda.

2001 ◽  
Vol 86 (3) ◽  
pp. 1297-1311 ◽  
Author(s):  
Haojiang Huang ◽  
Joseph Farley

Previous research indicates that activation of protein kinase C (PKC) plays a critical role in the induction and maintenance of memory-related changes in neural excitability of Type B photoreceptors in the eyes of nudibranch mollusk Hermissenda crassicornis (H.c.). The enhanced excitability of B cells is due in part to PKC-mediated reduction in somatic K+ currents. Here we examined the effects of protein phosphatase inhibitors on Type B photoreceptor excitability and K+ currents to determine the role(s) of protein phosphatases on memory formation in Hermissenda. Using electrophysiological and pharmacological methods, we found that the PP1 inhibitors calyculin A and inhibitor-2 depolarized Type B photoreceptors by 20–30 mV. A broad-spectrum kinase inhibitor, H7, blocked this effect. The depolarization induced by PP1 inhibition occluded that produced by an in vitro associative conditioning procedure. Calyculin and inhibitor-2 reduced the same B cell K+ currents ( I Aand I delayed) that are reduced by in vitro and behavioral conditioning. H7 blocked the reductions. Cantharidic acid (PP2A inhibitor) and cyclosporin (PP2B inhibitor) had negligible effects on B cell resting membrane potential, K+ currents, and in vitro conditioning-produced cumulative depolarization of B cells. These results suggest that the functional activity of K+ channels in B cells is sustained by basal activity of PP1. Inhibiting PP1 appears to allow one or more constitutively active kinase(s) to reduce K+ channel activity and thus mimic the effects of conditioning. Our results suggest that PP1 may oppose and/or constrain the extent of learning-produced changes in B cell excitability.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chien-Chang Chen ◽  
Rong-Fu Chen ◽  
Jheng-Syuan Shao ◽  
Yun-Ting Li ◽  
Yu-Chi Wang ◽  
...  

Abstract Background Our previous studies demonstrated that adipose-derived mesenchymal stromal cells (ASCs) have immunomodulatory effects that prolong allograft survival in a rodent hind-limb allotransplant model. In this study, we investigated whether the effects of immunomodulation by ASCs on allograft survival are correlated with B cell regulation. Methods B cells isolated from splenocytes were cocultured with ASCs harvested from adipose tissue from rodent groin areas for in vitro experiments. In an in vivo study, hind-limb allotransplantation from Brown-Norway to Lewis rats was performed, and rats were treated with ASCs combined with short-term treatment with anti-lymphocyte serum (ALS)/cyclosporine (CsA) as immunosuppressants. Peripheral blood and transplanted tissue were collected for further analysis. Result An in vitro study revealed that ASCs significantly suppressed lipopolysaccharide-activated B cell proliferation and increased the percentage of Bregs. The levels of immunoregulatory cytokines, such as TGF-β1 and IL-10, were significantly increased in supernatants of stimulated B cells cocultured with ASCs. The in vivo study showed that treatment with ASCs combined with short-term ALS/CsA significantly reduced the B cell population in alloskin tissue, increased the proportion of circulating CD45Ra+/Foxp3+ B cells, and decreased C4d expression in alloskin. Conclusion ASCs combined with short-term immunosuppressant treatment prolong allograft survival and are correlated with B cell regulation, C4d expression and the modulation of immunoregulatory cytokines.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1121 ◽  
Author(s):  
Akihiko Oka ◽  
Yoshiyuki Mishima ◽  
Bo Liu ◽  
Jeremy W. Herzog ◽  
Erin C. Steinbach ◽  
...  

The phosphoinositide 3-kinase catalytic subunit p110δ (PI3Kδ) gene maps to a human inflammatory bowel diseases (IBD) susceptibility locus, and genetic deletion of PI3Kδ signaling causes spontaneous colitis in mice. However, little is known regarding the role of PI3Kδ on IL-10-producing B cells that help regulate mucosal inflammation in IBD. We investigated the role of PI3Kδ signaling in B cell production of IL-10, following stimulation by resident bacteria and B cell regulatory function against colitis. In vitro, B cells from PI3KδD910A/D910A mice or wild-type B cells treated with PI3K specific inhibitors secreted significantly less IL-10 with greater IL-12p40 following bacterial stimulation. These B cells failed to suppress inflammatory cytokines by co-cultured microbiota-activated macrophages or CD4+ T cells. In vivo, co-transferred wild-type B cells ameliorated T cell-mediated colitis, while PI3KδD910A/D910A B cells did not confer protection from mucosal inflammation. These results indicate that PI3Kδ-signaling mediates regulatory B cell immune differentiation when stimulated with resident microbiota or their components, and is critical for induction and regulatory function of IL-10-producing B cells in intestinal homeostasis and inflammation.


2009 ◽  
Vol 102 (6) ◽  
pp. 3573-3595 ◽  
Author(s):  
Iksung Jin ◽  
Haojiang Huang ◽  
Benjamin Smith ◽  
Joseph Farley

Learning-correlated changes in the excitability and photoresponses of Hermissenda 's ocular type B photoreceptors are mediated by reductions in two distinct K+ currents, IA and IK-Ca. The suppression of these K+ currents has been linked to conditioning-produced activation of protein kinase C (PKC). The question of whether PKC accounts completely for the changes in excitability and K+ currents or whether other kinase(s) are involved has received little attention. In the present experiments, we asked whether protein tyrosine kinases (PTKs) might also contribute to conditioning-produced alterations in B cells. We found that the PTK inhibitors genistein and lavendustin A greatly reduced cumulative depolarization of type B cells, a short-term correlate of associative learning. This disruption occurred even when PKC activation had been either occluded by preexposure of type B cells to a phorbol ester or otherwise prevented by the pseudosubstrate inhibitor peptide PKC[19–31]. PTK inhibitors also increased the amplitude of the transient ( IA) and delayed ( IDelayed) components of voltage-dependent K+ current that have previously been shown to be selectively reduced by conditioning and to contribute to cumulative depolarization. Genistein partially prevented the reduction of IA and IDelayed due to in vitro conditioning and blocked the changes in their voltage dependencies. Ionophoresis of pervanadate ion, a potent inhibitor of protein tyrosine phosphatases, depolarized type B photoreceptors and occluded conditioning-produced cumulative depolarization. Pervanadate also suppressed IA and IDelayed, reduced their voltage dependence, and altered inactivation kinetics for IA, mimicking conditioning. Western blot analysis using a phosphotyrosine antibody indicated that conditioning increased the phosphotyrosine content of many proteins within the Hermissenda CNS. Collectively, our results suggest that in addition to PKC, one or more PTKs play an important role in conditioning-produced changes in type B cell excitability. PTKs and PKCs converge to effect reductions in B cell K+ currents during conditioning, apparently through distinct biophysical mechanisms.


2011 ◽  
Vol 71 (3) ◽  
pp. 432-439 ◽  
Author(s):  
Georg Pongratz ◽  
Madlen Melzer ◽  
Rainer H Straub

BackgroundAs previously shown, the sympathetic nervous system (SNS) shows proinflammatory activity during initiation of arthritis but is anti-inflammatory in established collagen-induced arthritis (CIA). Interleukin 10 (IL-10)-producing B cells suppress arthritis and are a potential target of the SNS because (1) B cells express functional β2-adrenoceptors (β2ARs) and (2) IL-10, at least in monocytes/macrophages, is regulated in a cAMP/PKA/CREB-dependent manner.ObjectiveTo test the hypothesis that anti-inflammatory effects of the SNS in CIA are mediated by stimulating IL-10-producing anti-inflammatory B cells.MethodsCollagen-induced arthritis in DBA/1 mice, sympathectomy, adoptive B cell transfer, in vitro B cell culture, and assessment of B cell IL-10 production.Results and conclusionMice treated with B cells from SNS-intact mice showed less severe arthritis than mice treated with B cells from sympathectomised mice. This anti-inflammatory action of B cells from SNS-intact mice correlated with increased IL-10 produced by B cells, which was mediated by norepinephrine (NE), in a β2AR, PKA-dependent manner. However, an NE-mediated increase in IL-10 was seen only in B cells from immunised but not naive mice, explaining in part the anti-inflammatory properties of the SNS in the late phase of arthritis. Finally, animals treated with B cells isolated from immunised mice and activated in vitro in the presence of a β2AR stimulus showed a decrease in arthritis severity in comparison with controls, an approach that might be used for future cellular treatment strategies.


2009 ◽  
Vol 417 (3) ◽  
pp. 673-683 ◽  
Author(s):  
Munetoyo Toda ◽  
Risa Hisano ◽  
Hajime Yurugi ◽  
Kaoru Akita ◽  
Kouji Maruyama ◽  
...  

CD22 [Siglec-2 (sialic acid-binding, immunoglobulin-like lectin-2)], a negative regulator of B-cell signalling, binds to α2,6- sialic acid-linked glycoconjugates, including a sialyl-Tn antigen that is one of the typical tumour-associated carbohydrate antigens expressed on various mucins. Many epithelial tumours secrete mucins into tissues and/or the bloodstream. Mouse mammary adenocarcinoma cells, TA3-Ha, produce a mucin named epiglycanin, but a subline of them, TA3-St, does not. Epiglycanin binds to CD22 and inhibits B-cell signalling in vitro. The in vivo effect of mucins in the tumour-bearing state was investigated using these cell lines. It should be noted that splenic MZ (marginal zone) B-cells were dramatically reduced in the mice bearing TA3-Ha cells but not in those bearing TA3-St cells, this being consistent with the finding that the thymus-independent response was reduced in these mice. When the mucins were administered to normal mice, a portion of them was detected in the splenic MZ associated with the MZ B-cells. Furthermore, administration of mucins to normal mice clearly reduced the splenic MZ B-cells, similar to tumour-bearing mice. These results indicate that mucins in the bloodstream interacted with CD22, which led to impairment of the splenic MZ B-cells in the tumour-bearing state.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


Sign in / Sign up

Export Citation Format

Share Document