Effects of local oscillator frequency on intersegmental coordination in the lamprey locomotor CPG: theory and experiment

1996 ◽  
Vol 76 (6) ◽  
pp. 4094-4103 ◽  
Author(s):  
K. A. Sigvardt ◽  
T. L. Williams

1. Experiments have been performed on in vitro preparations of lamprey spinal cord bathed in D-glutamate, which induces a pattern of activity recorded from ventral roots that is similar to that seen in the intact animal during swimming. The frequency of fictive swimming increases with increasing D-glutamate concentration, but intersegmental phase lag remains unaffected. 2. The effects on intersegmental phase lags of unequal activation of the rostral and caudal halves of a preparation were determined. Unequal activation was produced by placing a diffusion barrier in the middle of the chamber and perfusing the two halves with different concentrations of D-glutamate. 3. Within the rostral compartment, the phase lag increased from control when the rostral D-glutamate concentration was higher than the caudal concentration, and decreased from control when it was lower. By contrast, the phase lags within the caudal compartment did not depend on the ratio of D-glutamate concentration between the two compartments. 4. The frequency of the ventral root activity during differential activation was not significantly different from that of control experiments that had the same concentration as in the rostral compartment. 5. The results are discussed within the context of the mathematical analysis of chains of coupled oscillators by Kopell and Ermentrout and other current theories about the mechanisms of intersegmental coordination in the lamprey.

1992 ◽  
Vol 67 (6) ◽  
pp. 1683-1690 ◽  
Author(s):  
T. Matsushima ◽  
S. Grillner

1. The intersegmental coordination during undulatory locomotion in lamprey is characterized by a constant phase lag between consecutive segments, that is, the ratio between the intersegmental time lag and the cycle duration remains constant. It is shown that the spinal 5-HT (serotonin) system can, in a graded fashion, control the phase lag value from a rostrocaudal to a caudorostral lag corresponding to a reversed direction of swimming. These effects can be explained by a 5-HT-induced depression of Ca(2+)-dependent K+ channels (KCa channels) in network neurons. 2. The actions of the spinal 5-HT system were analyzed in the lamprey spinal cord preparation in vitro. Fictive swimming was induced by bath application of N-methyl-D-aspartate (NMDA). The intersegmental phase lag between ventral root burst activities was measured along the ipsilateral side of the spinal cord. The chamber with the preparation was partitioned into two pools so that the rostral and caudal halves of the preparation could be perfused independently with solutions containing the same level of NMDA (100-150 microM) with or without additional 5-HT or a 5-HT uptake blocker (citalopram). 3. Addition of 5-HT to one of these partitioned pools changed the intersegmental phase lag in this pool, whereas the cycle duration remained unchanged. It was determined by the activity in the "non-5-HT" pool. Addition of 5-HT to the caudal pool resulted in an increased rostrocaudal phase lag. When 5-HT was added to the rostral pool, on the other hand, the phase lag shifted direction to a backward coordination.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 9 (6) ◽  
pp. 1251-1264 ◽  
Author(s):  
Roger D. Traub ◽  
Miles A. Whittington ◽  
John G. R. Jefferys

Gamma-frequency electroencephalogram oscillations may be important for cognitive processes such as feature binding. Gamma oscillations occur in hippocampus in vivo during the theta state, following physiological sharp waves, and after seizures, and they can be evoked in vitro by tetanic stimulation. In neocortex, gamma oscillations occur under conditions of sensory stimulation as well as during sleep. After tetanic or sensory stimulation, oscillations in regions separated by several millimeters or more occur at the same frequency, but with phase lags ranging from less than 1 ms to 10 ms, depending on the conditions of stimulation. We have constructed a distributed network model of pyramidal cells and interneurons, based on a variety of experiments, that accounts for near-zero phase lag synchrony of oscillations over long distances (with axon conduction delays totaling 16 ms or more). Here we show that this same model can also account for fixed positive phase lags between nearby cell groups coexisting with near-zero phase lags between separated cell groups, a phenomenon known to occur in visual cortex. The model achieves this because interneurons fire spike doublets and triplets that have average zero phase difference throughout the network; this provides a temporal framework on which pyramidal cell phase lags can be superimposed, the lag depending on how strongly the pyramidal cells are excited.


2000 ◽  
Vol 83 (1) ◽  
pp. 465-476 ◽  
Author(s):  
William L. Miller ◽  
Karen A. Sigvardt

Timing of oscillatory activity along the longitudinal body axis is critical for locomotion in the lamprey and other elongated animals. In the lamprey spinal locomotor central pattern generator (CPG), intersegmental coordination is thought to arise from the pattern of extensive connections made by propriospinal interneurons. However, the mechanisms responsible for intersegmental coordination remain unknown, in large part because of the difficulty in obtaining quantitative information on these multisegmental fibers. System-level experiments were performed on isolated 50-segment preparations of spinal cord of adult silver lampreys, Ichthyomyzon unicuspis, to determine the dependence of CPG performance on multisegmental coupling. Coupling was manipulated through use of an experiment chamber with movable partitions, which allowed separate application of solution to rostral, middle, and caudal regions of the spinal cord preparation. During control trials, fictive locomotion, induced by bath application ofd-glutamate in all three regions, was recorded extracellularly from ventral roots. Local synaptic activity in a variable number of middle segments was subsequently blocked with a low-Ca2+, high-Mn2+ saline solution in the middle compartment, whereas conduction in axons spanning the middle segments was unaffected. Spectral analysis was used to assess the effects of blocking propriospinal coupling on intersegmental phase lag, rhythm frequency, correlation, and variability. Significant correlation and a stable phase lag between the rostral and caudal regions of the spinal cord preparation were maintained during block of as many as 16 and sometimes 20 intervening segments. However, the mean value of this rostrocaudal phase decreased with increasing number of blocked segments from the control value of approximately 1% per segment. By contrast, phase lags within the rostral and caudal end regions remained unaffected. The cycle frequency in the rostral and caudal regions decreased with the number of blocked middle segments and tended to diverge when a large number of middle segments was blocked. The variability in cycle frequency and intersegmental phase both increased with increasing number of blocked segments. In addition, a number of differences were noted in the properties of the motor output of the rostral and caudal regions of the spinal cord. The results indicate that the maximal functional length of propriospinal coupling fibers is at least 16–20 segments in I. unicuspis, whereas intersegmental phase lags are controlled at a local level and are not dependent on extended multisegmental coupling. Other possible roles for multisegmental coupling are discussed.


1985 ◽  
Vol 54 (6) ◽  
pp. 1444-1459 ◽  
Author(s):  
R. A. Pearce ◽  
W. O. Friesen

The isolated leech nervous system generates a metachronally coordinated rhythmic output that is the neuronal correlate of swimming activity. We investigated two factors that contribute to intersegmental coordination: the swim-cycle periods expressed by segmental ganglia and the strength of neuronal coupling between ganglia. To determine the regional variation in swim-cycle periods, we severed both of the lateral intersegmental connectives. We left intact the median connective, which conveys tonic excitation but little phasic information. We obtained a reduction in intersegmental coupling strength by severing a single lateral intersegmental connective. Cycle periods were manipulated by cooling restricted sections of the nerve cord. Our experiments revealed an anterior-posterior gradient of cycle periods in ganglia of the isolated nerve cord; that is, chains of ganglia obtained from the anterior nerve cord exhibited longer cycle periods than those obtained from the posterior end of the cord. This gradient extends posteriorly to approximately ganglion 12 and may reverse posterior to ganglion 13. Increasing local cycle periods by cooling restricted sections of the nerve cord caused delay in activity cycles in the cooled ganglia, relative to the cycles of ganglia at the control temperature. This finding demonstrates that the observed gradient in cycle period provides for smaller intersegmental phase lags than would occur if there were no period gradients. Reduction of coupling strength by severing a lateral connective led to altered phase relationships across the lesion, both at the motor and oscillator levels. For those ganglion chains in which the anterior ganglia had greater periods, the reduced coupling led to reduced or even reversed phase relationships across the lesion but left unchanged the phase lag between the ends of the chain. In contrast, reduced coupling between halves of a chain in which the posterior ganglia had greater cycle periods led to increased phase lags across the lesion and between the ends. These altered phase relationships arise from a relative increase in the contribution of period differences when coupling strength is decreased. We conclude that the anterior-to-posterior progression of neuronal activity in the isolated leech nerve cord during swimming activity is provided by the intersegmental coupling signals. Furthermore, the period gradient expressed in our preparations acts to provide for smaller phase lags than would be generated by these coupling signals in the absence of such a gradient.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 64 (3) ◽  
pp. 862-871 ◽  
Author(s):  
T. L. Williams ◽  
K. A. Sigvardt ◽  
N. Kopell ◽  
G. B. Ermentrout ◽  
M. P. Remler

1. This paper reports the results of an investigation of the basic mechanisms underlying intersegmental coordination in lamprey locomotion, by the use of a combined mathematical and biological approach. 2. Mathematically, the lamprey central pattern generator (CPG) is described as a chain of coupled nonlinear oscillators; experimentally, entrainment of fictive locomotion by imposed movement has been investigated. Interpretation of the results in the context of the theory has allowed conclusions to be drawn about the nature of ascending and descending coupling in the lamprey spinal CPG. 3. Theory predicts and data show that 1) the greater the number of oscillators in the chain, the smaller is the entrainment frequency range and 2) it is possible to entrain both above and below the rest frequency at one end but only above or below at the other end. 4. In the context of the experimental results, the theory indicates the following: 1) ascending coupling sets the intersegmental phase lags, whereas descending coupling changes the frequency of the coupled oscillators; 2) there are differences in the ascending and descending coupling other than strength; and it also suggests that 3) coupling slows down the oscillators.


1985 ◽  
Vol 54 (6) ◽  
pp. 1460-1472 ◽  
Author(s):  
R. A. Pearce ◽  
W. O. Friesen

Preparations of the nearly isolated leech nerve cord containing as few as two ganglia are sufficient to generate intersegmentally coordinated swim oscillations, provided that they receive tonic excitation from other segments via the median connective (Faivre's nerve). Due to their greatly reduced complexity, these preparations should provide useful experimental models of neuronal coordination. As a step in the development of such models, we have characterized the intersegmental coordination of nerve-cord chains ranging from 2 to 18 ganglia in length. We found that increases in swim-cycle period give rise to increases in intersegmental delay between homologous motoneuron bursts. Thus the intersegmental phase relationships are nearly independent of period. The relationship between intersegmental delay and period is approximately linear and extrapolates to intersect the period axis at approximately 0.3 s. This value is in close agreement with the analogous measure derived from tension measurements in the intact swimming leech. Chain length (number of connected ganglia in a preparation) has a pronounced influence on the magnitude of intersegmental phase lag. The longest chains (18 ganglia) exhibited phase lags of approximately 8 degrees per segment, whereas for pairs of ganglia the phase lag was approximately 40 degrees per segment. This dependence of phase lags on chain length was apparent at both the motor and oscillator levels. The intersegmental phase lag is not the same in all parts of the nerve cord. Rather, it increases steadily toward the posterior end of the chain, providing a deceleration in the rearward progression of the metachronal activity. The rearward increase in intersegmental phase lag is paralleled by a propensity of chains taken from more posterior sections of the nerve cord to exhibit larger phase lags. That is, there appears to be a phase-lag gradient intrinsic to the nerve cord to account for the deceleration of activity. The anterior and posterior ends of an isolated nerve cord continue to exhibit phase-locked bursting when an intervening section of five ganglia is bathed in elevated Mg2+ saline. Thus, information sufficient to coordinate oscillations in separate ganglia travels at least six segments. The phase lag across the blocked section is reduced but within each unblocked section is increased so that the phase lag between extreme ends is nearly unchanged. This altered burst pattern is due to a combination of synaptic block in segmental ganglia and conduction block in through-fibers.


2002 ◽  
Vol 205 (23) ◽  
pp. 3707-3716
Author(s):  
Malinda R. Boyd ◽  
Andrew D. McClellan

SUMMARYIn larval lamprey, locomotor activity recorded from whole animals and in vitro brain/spinal cord preparations was analyzed to determine how two parameters of locomotor activity, burst proportion (BP; relative duration of motor burst activity) and intersegmental phase lag (ϕ; normalized delay of burst activity along one side of the body), vary with changes in cycle time(T). In individual animals, the slopes of BP and ϕ versus T were compared using linear regression analysis, followed by statistical analysis of the slopes to determine whether the parameters changed significantly with variations in cycle time.For locomotor muscle activity in whole animals, the BP values increased significantly with decreases in T (i.e. negative slopes), while the slopes for ϕ values versus T were not significantly different from zero. For locomotor activity in preparations in vitro, the mean slopes for BP values versus T, although negative, were not significantly different from zero, and phase lags were also relatively constant with changes in cycle time.Increases in BP with decreases in cycle time and increases in swimming speed can be expected to generate proportionately more force per cycle,presumably to compensate for the increase in viscous resistance of moving the body more rapidly through water. By contrast, constant intersegmental phase lags will ensure that the relative timing of locomotor burst activity is constant and that an approximately single S-wave along the body is retained during different swimming speeds.


1993 ◽  
Vol 69 (3) ◽  
pp. 647-657 ◽  
Author(s):  
J. Tegner ◽  
T. Matsushima ◽  
A. el Manira ◽  
S. Grillner

1. The effect of spinal GABAergic neurons on the segmental neuronal network generating locomotion has been analyzed in the lamprey spinal cord in vitro. It is shown that gamma-aminobutyric acid (GABA)A- and GABAB-mediated effects influence the burst frequency and the intersegmental coordination and that the GABA system is active during normal locomotor activity. 2. Fictive locomotor activity was induced by superfusing the spinal cord with a Ringer solution containing N-methyl-D-aspartate (NMDA, 150 microM). The efferent locomotor activity was recorded by suction electrodes from the ventral roots or intracellularly from interneurons or motoneurons. If a GABA uptake blocker was added to the perfusate, the burst rate decreased. This effect was counteracted by GABAB receptor blockade by phaclofen or 2-(OH)-saclofen. If instead a GABAB receptor agonist (baclofen) was added during fictive locomotion, a depression of the burst rate occurred. It was concluded that a GABAB receptor activation due to an endogenous release of GABA caused a depression of the burst activity with a maintained well-coordinated locomotor activity. 3. If a GABAA receptor antagonist (bicuculline) is applied during fictive locomotion elicited by NMDA, a certain increase of the burst rate occurred. Conversely, if a selective GABAA agonist (muscimol) was administered, the burst rate decreased. Similarly, if the GABAA receptor activity was potentiated by activation of a benzodiazepine site by diazepam, the burst rate was reduced. If, however the GABAergic effect was first enhanced by an uptake blocker (nipecotic acid), an administration of a GABAA antagonist (bicuculline) increased the burst rate, but in addition, the burst pattern became less regular with recurrent shorter periods without clear reciprocal burst activity. The GABAA receptor activity appears important for the rate control and for permitting a regular burst pattern. 4. The intersegmental coordination in the lamprey is characterized by a rostrocaudal constant phase lag of approximately 1% of the cycle duration between the activation of consecutive segments during forward swimming. This rostrocaudal phase lag can be reversed during backward swimming, which can be induced also experimentally in the isolated spinal cord by providing a higher excitability to the caudal segments. In a split-bath configuration, a GABA uptake blocker or a GABAB agonist was administered to the rostral part of the spinal cord, which caused a reversal of the phase lag as during backward swimming. If GABAA receptors were blocked under similar conditions, the intersegmental coordination became irregular. It is concluded that an increased GABA activity in a spinal cord region can modify the intersegmental coordination.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Weili Bao ◽  
Jian-Young Wu

Neocortical “theta” oscillation (5–12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (∼8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike,” a “regular” period (with relatively stable frequency and amplitude), and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation, one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ∼50 mm/s. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about ≤300 μm wide horizontally. During irregular oscillations, the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.


1996 ◽  
Vol 75 (4) ◽  
pp. 1472-1482 ◽  
Author(s):  
O. Kiehn ◽  
O. Kjaerulff

1. Rhythmic activity was induced with either serotonin (5-HT; 10-100 microM) or dopamine (0.1-1.0 mM), in the in vitro spinal cord preparation of neonatal rats, with one intact hindlimb attached. Patterns of activity were investigated with multiple EMG recordings and the spatiotemporal characteristics of 5-HT- and dopamine-induced activity compared. 2. Dopamine-induced rhythmic activity was slow (cycle duration: 2.2-70.1 s) and irregular, whereas rhythmic activity induced by 5-HT was fast (cycle duration: 1.3-5.1 s) and regular. 3. During 5-HT- and dopamine-induced rhythmic activity, the timing of muscular activity was similar for hip flexors and hip adductors, for semimembranosus (hip extensor), and for muscles controlling the ankle and the foot. 4. In contrast, notable differences in the phase in the pattern induced by 5-HT compared with that induced by dopamine were found in the biceps femoris, semitendinosus, and quadriceps muscles. Biceps femoris and semitendinosus (functional hip extensors and knee flexors) were always extensor-like during 5-HT-induced activity, whereas in dopamine, these muscles displayed flexor-like bursts and double bursts as well as extensor-like bursts. Lack of EMG activity in biceps femoris and semitendinosus was encountered also in dopamine. In rectus femoris, vastus lateralis, and vastus medialis (main function: knee extension), the activity was dominated by flexor-like bursts in 5-HT, whereas in dopamine the activity was shifted to a predominantly extensor-like pattern. 5. The relationship between flexor and extensor burst duration and cycle duration was more variable than described for locomotor activity in adult animals. 6. The relative timing of muscle activity was stable from P0 to P4. The most important difference between rats aged 0-1 days and rats aged 2-4 days was a delayed flexor-extensor transition in older animals. 7. The complex timing of hindlimb muscle activity was relatively unchanged after transecting all dorsal roots. 8. Finally, the relationship between flexor and extensor activity and ventral root discharges was determined. It was found that the L2 ventral root burst was in phase with simple flexors while the L5 burst coincide with the extensor phase. 9. We conclude, that 5-HT and dopamine can activate spinal central pattern generators (CPGs) that already at birth are able to produce distinct patterns of motor activity. Modulatory inputs thus seems to be able to reconfigure the CPGs to produce specific motor outputs.


Sign in / Sign up

Export Citation Format

Share Document