Characterization of dietary protein-dependent amino acid metabolism by linking free amino acids with transcriptional profiles through analysis of correlation

2008 ◽  
Vol 34 (3) ◽  
pp. 315-326 ◽  
Author(s):  
Yasushi Noguchi ◽  
Nahoko Shikata ◽  
Yasufumi Furuhata ◽  
Takeshi Kimura ◽  
Michio Takahashi

This study aims to characterize diet-dependent amino acid metabolism by linking profiles of amino acids concentrations (“aminograms”) with transcript datasets through the analysis of correlation. We used a dietary model of protein restriction-to-excess, where rats were fed diets with different levels of casein (5, 10, 15, 20, 30, 50, and 70%) for 2 wk. Twenty-five different amino acids in the plasma, liver, kidney, small intestine, and muscle and 71 gene transcripts in these compartments were measured together with general physiological variables. Under low-protein diet (LPD) conditions, the plasma aminogram for EAA was similar to that of the liver and the small intestine, respectively. Under the high-protein diet (HPD), however, the plasma aminogram for EAA became like that of muscle, while that of NEAA was similar with that of both liver and muscle. To assess the impact of gene expressions in each tissue on the plasma aminograms, correlations were obtained between aminograms and transcripts in each tissue under a diet with different protein levels. Based on the correlations obtained, amino acids and transcripts were systematically connected and then a metabolite-to-gene network was constructed for either LPD or HPD condition. The networks obtained and some other metabolically meaningful relationships such as ureagenesis and serine metabolism clearly illustrated activation of either body protein breakdown with LPD or amino acid catabolism with HPD.

1978 ◽  
Vol 176 (2) ◽  
pp. 623-626 ◽  
Author(s):  
E A Newsholme ◽  
T Williams

Starvation or feeding rats on a high-protein diet, valine or isoleucine, but not leucine, increases the activity of muscle phosphoenolpyruvate carboxykinase, but has no effect on NADP+-linked malate dehydrogenase. This suggests that muscle phosphoenolpyruvate carboxykinase is involved in oxidation or conversion of some amino acids to alanine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueyuan Yang ◽  
Bangjian Dong ◽  
Lijun An ◽  
Qi Zhang ◽  
Yao Chen ◽  
...  

Accumulating evidences suggested an association between gut microbiome dysbiosis and impaired glycemic control. Ginsenoside Rb1 (Rb1) is a biologically active substance of ginseng, which serves anti-diabetic effects. However, its working mechanism especially interaction with gut microbes remains elusive in detail. In this study, we investigated the impact of Rb1 oral supplementation on high fat diet (HFD) induced obesity mice, and explored its mechanism in regulating blood glucose. The results showed that higher liver weight and lower cecum weight were observed in HFD fed mice, which was maintained by Rb1 administration. In addition, Rb1 ameliorated HFD induced blood lipid abnormality and improved insulin sensitivity. Several mRNA expressions in the liver were measured by quantitative real-time PCR, of which UCP2, Nr1H4, and Fiaf were reversed by Rb1 treatment. 16S rRNA sequencing analysis indicated that Rb1 significantly altered gut microbiota composition and increased the abundance of mucin-degrading bacterium Akkermansia spp. compared to HFD mice. As suggested via functional prediction, amino acid metabolism was modulated by Rb1 supplementation. Subsequent serum amino acids investigation indicated that several diabetes associated amino acids, like branched-chain amino acids, tryptophan and alanine, were altered in company with Rb1 supplementation. Moreover, correlation analysis firstly implied that the circulation level of alanine was related to Akkermansia spp.. In summary, Rb1 supplementation improved HFD induced insulin resistance in mice, and was associated with profound changes in microbial composition and amino acid metabolism.


2020 ◽  
Author(s):  
◽  
María Isabel Rubia

The current world population together with the predictions of further growth suggest that it is necessary to increase crop yields worldwide. Legumes are the second most important food crop after cereals, and thanks to their ability to establish a symbiotic relationship with soil bacteria, the impact of the use of nitrogen fertilizers on the environment is reduced. This symbiosis gives rise to the process known as biological nitrogen fixation (BNF), which consists in the reduction of molecular nitrogen to ammonium, from which plants synthesize organic nitrogenous products essential for their nutrition. Unfortunately, BNF is a very sensitive process to biotic and abiotic stresses such as salinity, drought, or nutrient limitation, among others. The general aim of this work was to gain further insights in the regulation of BNF and the physiological and biochemical mechanisms that plant activate in response to abiotic stresses. In order to counteract the negative effects of osmotic stresses, plant and bacteria are able to synthesise osmoprotectant compounds to maintain cell viability, e.g. the amino acid proline. A real-time monitoring of proline utilisation in both plant and bacterial systems is a first key step towards understanding the multiple roles of this molecule under osmotic stress situations. Our results in chapter one showed that, in bacteroids, proline accumulation does not occur during the stress phase, but during recovery, once optimal plant growth conditions are re-established. In chapter two, a proteomic and metabolic study was performed to gain further insights about amino acid metabolism in pea nodules. In the classical model of nutrient exchange between symbionts, plant supplies energy in the form of dicarboxylates to the N2-fixing bacteroids in exchange for ammonium. However, this classic model was challenged upon the observation that mutations in the general ABC amino-acid transporters AapJQMP and BraDEFGC in Rhizobium leguminosarum resulted in N starvation symptoms in both pea and bean plants. The uptake of branched-chain amino acids (BCAAs) from the plant by the bacteroid was found to be essential for an effective BNF at least in R. leguminosarum species. Another experimental approach to further understand the role of amino acid metabolism in nodules is the application of compounds that inhibit the biosynthesis of BCAAs in plant cells such as group B herbicides. These approaches allowed us to verify how the blockage of BCAA transport between symbionts had a greater effect on nodule metabolism than the inhibition of BCAA biosynthesis. In fact, BCAA biosynthesis was also inhibited due to the aap/bra double mutation. In chapter two, we also evaluate the effect of water deficit on nodule proteome, since among the strategies that plants use in response to abiotic stresses there are several related to amino acid metabolism. This study highlights the relevance of low abundant amino acids, such as methionine, aromatic amino acids or γ-aminobutyric acid, in the response to water deficit. Finally, until now no attempt has been made to carry out an integral approach in which possible changes caused by drought in carbon (C) allocation, and in addition, the effect on the consumption or accumulation of metabolites in all plant organs be analysed. For this purpose, in chapter three, the effect of drought on both the [U-13C]-sucrose distribution and ureides, organic acids and carbohydrates content were analysed. We found that drought decreased 13C transport to sink tissues and changed the priority of C allocation between sink organs.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 449-451 ◽  
Author(s):  
G. Peter ◽  
H. Angst ◽  
U. Koch

Free and protein-bound amino acids in serum and scales were investigated. In serum the bound amino acids of psoriatics are significantly higher with exception of Pro, Met, Tyr and Phe in contrast to normal subjects. For free amino acids the differences between normal subjects and psoriatics found in serum and scales are not significant. Results are discussed in relation to the single amino acids and the biochemical correlations are outlined which takes the pathological process as a basis.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


PEDIATRICS ◽  
1961 ◽  
Vol 27 (4) ◽  
pp. 539-550 ◽  
Author(s):  
William L. Nyhan ◽  
Margaret Borden ◽  
Barton Childs

The amino acids of blood and urine have been investigated using chromatography on cation exchange columns in the study of a patient with idiopathic hyperglycinemia. Marked increases in concentrations of glycine, serine, alanine, isoleucine and valine were found in the plasma. These changes were not reflected in increased excretion of these amino acids in the urine (with the exception of glycine). Restriction of the dietary intake of protein resulted in a decrease in the concentrations of glycine and other amino acids in the blood and urine, and there was a concomitant decrease in the frequency and severity of episodes of acute illness. The oral administration of leucine was found to induce a decrease in the levels of a number of amino acids in the patient and in controls. Continued decrease during the 3 hours of observation was noted for serine, isoleucine and valine. A mild but progressive decrease in threonine concentration was observed in the controls, while in the patient the concentration increased after the administration of leucine. Decreased levels at 1½ hours, returning toward the fasting levels at 3 hours, were observed for alanine, taurine and glycine. These apparently normal responses to leucine loads were not mediated through increase in the urinary excretion of the amino acids involved, and the data are interpreted to indicate entry of these amino acids into cells.


2019 ◽  
Vol 316 (4) ◽  
pp. E660-E673 ◽  
Author(s):  
Katrine D. Galsgaard ◽  
Marie Winther-Sørensen ◽  
Jens Pedersen ◽  
Sasha A. S. Kjeldsen ◽  
Mette M. Rosenkilde ◽  
...  

Glucagon and insulin are important regulators of blood glucose. The importance of insulin receptor signaling for alpha-cell secretion and of glucagon receptor signaling for beta-cell secretion is widely discussed and of clinical interest. Amino acids are powerful secretagogues for both hormones, and glucagon controls amino acid metabolism through ureagenesis. The role of insulin in amino acid metabolism is less clear. Female C57BL/6JRj mice received an insulin receptor antagonist (IRA) (S961; 30 nmol/kg), a glucagon receptor antagonist (GRA) (25-2648; 100 mg/kg), or both GRA and IRA (GRA + IRA) 3 h before intravenous administration of similar volumes of saline, glucose (0.5 g/kg), or amino acids (1 µmol/g) while anesthetized with isoflurane. IRA caused basal hyperglycemia, hyperinsulinemia, and hyperglucagonemia. Unexpectedly, IRA lowered basal plasma concentrations of amino acids, whereas GRA increased amino acids, lowered glycemia, and increased glucagon but did not influence insulin concentrations. After administration of GRA + IRA, insulin secretion was significantly reduced compared with IRA administration alone. Blood glucose responses to a glucose and amino acid challenge were similar after vehicle and GRA + IRA administration but greater after IRA and lower after GRA. Anesthesia may have influenced the results, which otherwise strongly suggest that both hormones are essential for the maintenance of glucose homeostasis and that the secretion of both is regulated by powerful negative feedback mechanisms. In addition, insulin limits glucagon secretion, while endogenous glucagon stimulates insulin secretion, revealed during lack of insulin autocrine feedback. Finally, glucagon receptor signaling seems to be of greater importance for amino acid metabolism than insulin receptor signaling.


2020 ◽  
Vol 26 (4) ◽  
pp. 277-287
Author(s):  
Christine Leary ◽  
Roger G Sturmey

Abstract The pattern of metabolism by early embryos in vitro has been linked to a range of phenotypes, including viability. However, the extent to which metabolic function of embryos is modified by specific methods used during ART has yet to be fully described. This study has sought to determine if the mode of fertilization used to create embryos affects subsequent embryo metabolism of substrates. A metabolic profile, including consumption of key substrates and the endogenous triglyceride content of individual IVF and ICSI supernumerary embryos, was assessed and compared. Embryo development and quality was also recorded. All embryos were donated at a single clinical IVF center, on Day 5, from 36 patients aged 18–38 years, The data revealed that consumption of glucose and pyruvate, and production of lactate, did not differ between embryos created by IVF or ICSI. Similarly, the mode of insemination did not impact on the triglyceride content of embryos. However, ICSI-derived embryos displayed a more active turnover of amino acids (P = 0.023), compared to IVF embryos. The specific amino acids produced in higher quantities from ICSI compared to IVF embryos were aspartate (P = 0.016), asparagine (P = 0.04), histidine (P = 0.021) and threonine (P = 0.009) while leucine consumption was significantly lower (P = 0.04). However, importantly neither individual nor collective differences in amino acid metabolism were apparent for sibling oocytes subjected to either mode of fertilization. Embryo morphology (the number of top grade embryos) and development (proportion reaching the blastocyst stage) were comparable in patients undergoing IVF and ICSI. In conclusion, the microinjection of spermatozoa into oocytes does not appear to have an impact on subsequent metabolism and viability. Observed differences in amino acid metabolism may be attributed to male factor infertility of the patients rather than the ICSI procedure per se.


Sign in / Sign up

Export Citation Format

Share Document