scholarly journals Lens Gap Junctions in Growth, Differentiation, and Homeostasis

2010 ◽  
Vol 90 (1) ◽  
pp. 179-206 ◽  
Author(s):  
Richard T. Mathias ◽  
Thomas W. White ◽  
Xiaohua Gong

The cells of most mammalian organs are connected by groups of cell-to-cell channels called gap junctions. Gap junction channels are made from the connexin (Cx) family of proteins. There are at least 20 isoforms of connexins, and most tissues express more than 1 isoform. The lens is no exception, as it expresses three isoforms: Cx43, Cx46, and Cx50. A common role for all gap junctions, regardless of their Cx composition, is to provide a conduit for ion flow between cells, thus creating a syncytial tissue with regard to intracellular voltage and ion concentrations. Given this rather simple role of gap junctions, a persistent question has been: Why are there so many Cx isoforms and why do tissues express more than one isoform? Recent studies of lens Cx knockout (KO) and knock in (KI) lenses have begun to answer these questions. To understand these roles, one must first understand the physiological requirements of the lens. We therefore first review the development and structure of the lens, its numerous transport systems, how these systems are integrated to generate the lens circulation, the roles of the circulation in lens homeostasis, and finally the roles of lens connexins in growth, development, and the lens circulation.

2000 ◽  
Vol 11 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Lucy A. Stebbings ◽  
Martin G. Todman ◽  
Pauline Phelan ◽  
Jonathan P. Bacon ◽  
Jane A. Davies

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes,Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In pairedXenopus oocytes, the injection of Dm-inx2mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression ofDm-inx2 in vivo has limited effects on the viability ofDrosophila, and animals ectopically expressingDm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
José Luis Vega ◽  
Mario Subiabre ◽  
Felipe Figueroa ◽  
Kurt Alex Schalper ◽  
Luis Osorio ◽  
...  

In vertebrates, connexins (Cxs) and pannexins (Panxs) are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.


2002 ◽  
Vol 80 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Christian CG Naus

Gap junctional intercellular communication has been implicated in growth control and differentiation. The mechanisms by which connexins, the gap junction proteins, act as tumor suppressors are unclear. In this review, several different mechanisms are considered. Since transformation results in a loss of the differentiated state, one mechanism by which gap junctions may control tumour progression is to promote or enhance differentiation. Processes of differentiation and growth control are mediated at the genetic level. Thus, an alternative or complimentary mechanism of tumour suppression could involve the regulation of gene expression by connexins and gap junctional coupling. Finally, gap junction channels form a conduit between cells for the exchange of ions, second messengers, and small metabolites. It is clear that the sharing of these molecules can be rather selective and may be involved in growth control processes. In this review, examples will be discussed that provide evidence for each of these mechanisms. Taken together, these findings point to a variety of mechanims by which connexins and the gap junction channels that they form may control tumour progression.Key words: gap junctions, connexin, cancer.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1374
Author(s):  
Yumeng Quan ◽  
Yu Du ◽  
Yuxin Tong ◽  
Sumin Gu ◽  
Jean X. Jiang

The lens is continuously exposed to oxidative stress insults, such as ultraviolet radiation and other oxidative factors, during the aging process. The lens possesses powerful oxidative stress defense systems to maintain its redox homeostasis, one of which employs connexin channels. Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication between the intracellular and extracellular environments, and (2) gap junction channels that mediate cell-cell communication between adjacent cells. The avascular lens transports nutrition and metabolites through an extensive network of connexin channels, which allows the passage of small molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce cataract formation through impaired redox homeostasis. Here, we review the recent advances in the knowledge of connexin channels in lens redox homeostasis and their response to cataract-related oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative stress in regulating connexin channels.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Qingqing Liu ◽  
Xing Yang ◽  
Jingsong Tian ◽  
Zhongbao Gao ◽  
Meng Wang ◽  
...  

Gap junctions are widely distributed in the brains across species and play essential roles in neural information processing. However, the role of gap junctions in insect cognition remains poorly understood. Using a flight simulator paradigm and genetic tools, we found that gap junctions are present in Drosophila Kenyon cells (KCs), the major neurons of the mushroom bodies (MBs), and showed that they play an important role in visual learning and memory. Using a dye coupling approach, we determined the distribution of gap junctions in KCs. Furthermore, we identified a single pair of MB output neurons (MBONs) that possess a gap junction connection to KCs, and provide strong evidence that this connection is also required for visual learning and memory. Together, our results reveal gap junction networks in KCs and the KC-MBON circuit, and bring new insight into the synaptic network underlying fly’s visual learning and memory.


2002 ◽  
Vol 283 (5) ◽  
pp. L875-L893 ◽  
Author(s):  
Michael Koval

Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of intercellular coupling in response to cell stress and to regulate surfactant secretion. However, defining the precise signals transmitted through gap junction channels and the cross talk between gap junctions and other signaling pathways has proven difficult. Insights from what is known about roles for gap junctions in other systems in the context of the connexin expression pattern by lung cells can be used to predict potential roles for gap junctional communication between alveolar epithelial cells.


1989 ◽  
Vol 93 (3) ◽  
pp. 509-513
Author(s):  
W.T. Gruijters

New immunolocalization data put the role of the lens MP26 (MIP) protein in a new perspective. During maturation of lens fibre cells, MIP is found to associate specifically with two structures, gap junctions and cell interlocking processes (known as ball and socket domains). It is significant that the zone in which these associations are most striking is discrete, coinciding with the zone of rapidly enlarging junctional plaques and newly forming ball and socket domains. Observation of domain-specific interactions of MIP with forming gap junctions and ball and socket domains suggests that MIP may be involved in the formation of close membrane appositions. Furthermore, previous ambiguities in the literature over the presence of MIP in gap junctions are clarified by the knowledge that, in situ, MIP associates strongly with gap junctions for only a brief period (with less than about 5% of all lens gap junctions at any one time) during the assembly of junctional plaques.


2014 ◽  
Vol 70 (a1) ◽  
pp. C851-C851
Author(s):  
Atsunori Oshima ◽  
Tomohiro Matsuzawa ◽  
Kazuyoshi Murata ◽  
Kouki Nishikawa ◽  
Yoshinori Fujiyoshi

Innexin is a molecular component of invertebrate gap junctions, which have an important role in neural and muscular electrical activity in invertebrates. Although the structure of vertebrate connexin26 was revealed by X-ray crystallography [1], the structure of innexin channels remains poorly understood. To study the structure of innexin gap junction channels, we expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels, and characterized their molecular dimensions and channel permeability using electron microscopy (EM) and a fluorescent dye transfer assay, respectively [2]. Negative-staining and thin-section EM of isolated INX-6 gap junction plaques revealed a loosely packed hexagonal lattice. We performed single particle analysis of purified INX-6 channels with negative-staining and cryo EM. Based on the negative-stain EM images, the class average of the junction form had a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class average of the hemichannels had diameters of up to 140 Å in the presence of detergent micelles. Cryo EM images revealed rotational peaks that could be related to the INX-6 subunits. Structural analysis of the reconstituted INX-6 channels with single particle analysis and electron tomography suggested that the oligomeric number of the INX-6 channel was distinct from that of the dodecameric connexin channel. Dye transfer experiments indicated that the INX-6-GFP-His channels were permeable to 3-kDa and 10-kDa dextran-conjugated tracers. These findings indicate that INX-6 channels have a characteristic oligomer component that differs from that in connexin gap junction channels.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Consuelo Ventura-Mejía ◽  
Laura Medina-Ceja

Background. In models of temporal lobe epilepsy and in patients with this pathology, high frequency oscillations called fast ripples (FRs, 250–600 Hz) can be observed. FRs are considered potential biomarkers for epilepsy and, in the light of manyin vitroandin silicostudies, we thought that electrical synapses mediated by gap junctions might possibly modulate FRsin vivo.Methods. Animals with spontaneous recurrent seizures induced by pilocarpine administration were implanted with movable microelectrodes in the right anterior and posterior hippocampus to evaluate the effects of gap junction blockers administered in the entorhinal cortex. The effects of carbenoxolone (50 nmoles) and quinine (35 pmoles) on the mean number of spontaneous FR events (occurrence of FRs), as well as on the mean number of oscillation cycles per FR event and their frequency, were assessed using a specific algorithm to analyze FRs in intracranial EEG recordings.Results. We found that these gap junction blockers decreased the mean number of FRs and the mean number of oscillation cycles per FR event in the hippocampus, both during and at different times after carbenoxolone and quinine administration.Conclusion. These data suggest that FRs may be modulated by gap junctions, although additional experimentsin vivowill be necessary to determine the precise role of gap junctions in this pathological activity associated with epileptogenesis.


Sign in / Sign up

Export Citation Format

Share Document