scholarly journals Strain-Dependence of Electron Transport in Bulk Si and Deep-Submicron MOSFETs

VLSI Design ◽  
2001 ◽  
Vol 13 (1-4) ◽  
pp. 163-167 ◽  
Author(s):  
F. M. Bufler ◽  
P. D. Yoder ◽  
W. Fichtner

The strain-dependence of electron transport in bulk Si and deep-submicron MOSFETs is investigated by full-band Monte Carlo simulation. On the bulk level, the drift velocity at medium field strengths is still enhanced above Ge-contents of 20% in the substrate, where the low-field mobility is already saturated, while the saturation velocity remains unchanged under strain. In an n-MOSFET with a metallurgical channel length of 50nm, the saturation drain current is enhanced by up to 11%, but this maximum improvement is essentially already achieved at a Ge-content of 20% emphasizing the role of the low-field mobility as a key indicator of device performance in the deep-submicron regime.

2013 ◽  
Vol 8 (2) ◽  
pp. 71-77
Author(s):  
Eddy Simoen ◽  
Maria G. C. Andrade ◽  
Luciano M. Almeida ◽  
M. Aoulaiche ◽  
C. Caillat ◽  
...  

The variability of the low-frequency (LF) noise in n-channel MOSFETs fabricated on an Ultra-Thin Buried Oxide (UTBOX) Silicon-on-Insulator (SOI) substrate has been studied and compared with the variability in the threshold voltage and low-field mobility of the same devices. No correlation has been found between the noise magnitude and the DC parameters, suggesting that the traps responsible for the current fluctuations do not affect the latter. A possible explanation is that the LF noise is dominated by Generation-Recombination (GR) centers in the silicon film, which have less impact on the drain current.


VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 1-11 ◽  
Author(s):  
Shin-Ichi Takagi

The importance of 2-dimensional (2D) features of carriers in Si MOSFETs on the device performance is re-examined experimentally and theoretically from the viewpoint of low-field mobility, velocity in high tangential fields and the inversion-layer capacitance. It is confirmed that low-field mobility and inversion-layer capacitance can be understood well in terms of the 2D subbands and the 2D carrier transport. In order to obtain fully-quantitative understanding of low-field mobility, however, it is still necessary to more accurately determine the amount of the scattering parameters in the inversion layer. On the other hand, saturation velocity is considered to be less influenced by the 2D quantization, while it is found experimentally that saturation velocity is slightly dependent on surface carrier concentration.According to the knowledge of 2-dimensional carrier transport in Si inversion layer, an effective way to have higher current drive is to increase the occupancy of the 2-fold valleys, which have lower conductivity mass, on a (100) surface. From this viewpoint, two device structures, strained Si MOSFETs and SOI MOSFETs with ultra-thin SOI films, are introduced and the behavior of low-field mobility is analyzed through the calculations of the subband structures and phonon-limited mobility.


1999 ◽  
Vol 572 ◽  
Author(s):  
B. E. Foutz ◽  
S. K. Otleary ◽  
M. S. Shur ◽  
L. F. Eastman

ABSTRACTWe study electron transport in the alloys of aluminum nitride and gallium nitride and alloys of indium nitride and gallium nitride. In particular, employing Monte Carlo simulations we determine the velocity-field characteristics associated with these alloys for various alloy compositions. We also determine the dependence of the low-field mobility on the alloy composition. We find that while the low-field mobility is a strong function of the alloy composition, the peak and saturation drift velocities exhibit a more mild dependence. Transient electron transport is also considered. We find that the velocity overshoot characteristic is a strong function of the alloy composition. The device implications of these results are discussed.


Sign in / Sign up

Export Citation Format

Share Document