scholarly journals On the Variability of the Low-Frequency Noise in UTBOX SOI nMOS-FETs

2013 ◽  
Vol 8 (2) ◽  
pp. 71-77
Author(s):  
Eddy Simoen ◽  
Maria G. C. Andrade ◽  
Luciano M. Almeida ◽  
M. Aoulaiche ◽  
C. Caillat ◽  
...  

The variability of the low-frequency (LF) noise in n-channel MOSFETs fabricated on an Ultra-Thin Buried Oxide (UTBOX) Silicon-on-Insulator (SOI) substrate has been studied and compared with the variability in the threshold voltage and low-field mobility of the same devices. No correlation has been found between the noise magnitude and the DC parameters, suggesting that the traps responsible for the current fluctuations do not affect the latter. A possible explanation is that the LF noise is dominated by Generation-Recombination (GR) centers in the silicon film, which have less impact on the drain current.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Jun-Sik Yoon

DC performance and the variability of n-type silicon-on-insulator dopant-segregated FinFETs with different silicide thickness (Tsili) are analyzed. DC parameters including threshold voltage, low-field-mobility-related coefficient, and parasitic resistance are extracted from Y-function method for the comparison of DC performance and variability, and the correlation analysis. All the devices show similar subthreshold characteristics, but the devices with thicker Tsili have greater threshold voltages. The devices with thicker Tsili suffer from the DC performance degradation and its greater variations because the Schottky barrier height at the NiSi/Si interface increases and fluctuates greatly. This effect is validated by greater threshold voltages, larger parasitic resistances, and high correlations among all the DC parameters for the thicker Tsili. The devices with thicker Tsili also have higher low-frequency noise because of larger parasitic resistances and their correlated mobility degradations. Therefore, the device with relatively thin Tsili is expected to have better DC performance and variability concerns.


2020 ◽  
Vol 20 (8) ◽  
pp. 4699-4703
Author(s):  
Hyun-Dong Song ◽  
Hyeong-Sub Song ◽  
Sunil Babu Eadi ◽  
Hyun-Woong Choi ◽  
Ga-Won Lee ◽  
...  

In this work, noise mechanism of a tunneling field-effect transistor (TFET) on a silicon-on-insulator substrate was studied as a function of temperature. The results show that the drain current and subthreshold slope increase with increase in temperature. This temperature dependence is likely caused by the generation of greater current flow owing to decreased silicon band gap and leakage. Further, the TFET noise decreases with increase in temperature. Therefore, the effective tunneling length between the source and the channel appears to decrease and Poole–Frenkel tunneling occurs.


VLSI Design ◽  
2001 ◽  
Vol 13 (1-4) ◽  
pp. 163-167 ◽  
Author(s):  
F. M. Bufler ◽  
P. D. Yoder ◽  
W. Fichtner

The strain-dependence of electron transport in bulk Si and deep-submicron MOSFETs is investigated by full-band Monte Carlo simulation. On the bulk level, the drift velocity at medium field strengths is still enhanced above Ge-contents of 20% in the substrate, where the low-field mobility is already saturated, while the saturation velocity remains unchanged under strain. In an n-MOSFET with a metallurgical channel length of 50nm, the saturation drain current is enhanced by up to 11%, but this maximum improvement is essentially already achieved at a Ge-content of 20% emphasizing the role of the low-field mobility as a key indicator of device performance in the deep-submicron regime.


1999 ◽  
Vol 598 ◽  
Author(s):  
P. V. Necliudov ◽  
D. J. Gundlach ◽  
T. N. Jackson ◽  
S. L. Rumyantsev ◽  
M. S. Shur

ABSTRACTWe studied the low frequency noise in top-contact pentacene Thin Film Transistors (TFTs). The relative spectral noise density of the drain current fluctuations SI/I2 had a form of 1/f noise in the measured frequency range 1Hz - 3.5kHz.Our studies of the noise dependencies on the gate-source VGS and drain-source VDS voltages showed that the dependencies differed from those observed for conducting polymers and resembled those reported for crystalline Si n-MOSFETs.To compare the device noise level with those of other devices and materials, we extracted the Hooge parameter α. In order to calculate the total number of carriers we used a model simulating the device DC characteristics, similar to that for amorphous Si TFTs. The extracted Hooge parameter was 0.04. For an organic material this is an extremely small value, which is three orders of magnitude smaller that the Hooge parameter values reported for conducting polymers and only several times higher than the values for amorphous Si TFTs.


Sign in / Sign up

Export Citation Format

Share Document