scholarly journals Efficient Scheme for Implementing Large Size Signed Multipliers Using Multigranular Embedded DSP Blocks in FPGAs

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Shuli Gao ◽  
Dhamin Al-Khalili ◽  
Noureddine Chabini

Modern FPGAs contain embedded DSP blocks, which can be configured as multipliers with more than one possible size. FPGA-based designs using these multigranular embedded blocks become more challenging when high speed and reduced area utilization are required. This paper proposes an efficient design methodology for implementing large size signed multipliers using multigranular small embedded blocks. The proposed approach has been implemented and tested targeting Altera's Stratix II FPGAs with the aid of the Quartus II software tool. The implementations of the multipliers have been carried out for operands with sizes ranging from 40 to 256 bits. Experimental results demonstrated that our design approach has outperformed the standard scheme used by Quartus II tool in terms of speed and area. On average, the delay reduction is about 20.7% and the area saving, in terms of ALUTs, is about 67.6%.

Author(s):  
Ahmed Salah Hameed ◽  
Marwa Jawad Kathem

Adders are the heart of data path circuits for any processor in digital computer and signal processing systems. Growth in technology keeps supporting efficient design of binary adders for high speed applications. In this paper, a fast and area-efficient modified carry save adder (CSA) is presented. A multiplexer based design of full adder is proposed to implement the structure of the CSA. The proposed design of full adder is employed in designing all stages of traditional CSA. By modifying the design of full adder in CSA, the complexity and area of the design can be reduced, resulting in reduced delay time. The VHDL implementations of CSA adders including (the proposed version, traditional CSA, and modified CSAs presented in literature) are simulated using Quartus II synthesis software tool with the altera FPGA EP2C5T144C6 device (Cyclone II). Simulation results of 64-bit adder designs demonstrate the average improvement of 17.75%, 1.60%, and 8.81% respectively for the worst case time, thermal power dissipation and number of FPGA logic elements.


Author(s):  
Georgios Ermidis ◽  
Rasmus C. Ellegard ◽  
Vincenzo Rago ◽  
Morten B. Randers ◽  
Peter Krustrup ◽  
...  

The purpose of this study was to quantify the exercise intensity and technical involvement of U9 boys’ and girls’ team handball during different game formats, and the differences between genders. Locomotor activity (total distance, distance in speed zones, accelerations, and decelerations), heart rate (HR), and technical involvement (shots, goals, and duels) metrics were collected during various 15 min game formats from a total of 57 Danish U9 players (37 boys and 20 girls). Game formats were a small size pitch (20 × 13 m) with 3 vs 3 players and offensive goalkeepers (S3 + 1) and 4 vs 4 players (S4), a medium size pitch (25.8 × 20 m) with 4 vs 4 (M4) and 5 vs 5 (M5) players, and a large size pitch (40 × 20 m) with 5 vs 5 (L5) players. Boys and girls covered a higher total distance (TD) of high-speed running (HSR) and sprinting during L5 games compared to all other game formats (p < 0.05; ES = (−0.9 to −2.1), (−1.4 to −2.8), and (−0.9 to −1.3) respectively). Players covered the highest amount of sprinting distance in L5 games compared to all other game formats (p < 0.01; ES = 0.8 to 1.4). In all the game formats, players spent from 3.04 to 5.96 min in 180–200 bpm and 0.03 min to 0.85 min in >200 bpm of the total 15 min. In addition, both genders had more shots in S3 + 1 than M5 (p < 0.01; ES = 1.0 (0.4;1.7)) and L5 (p < 0.01; ES = 1.1 (0.6;2.2)). Team handball matches have high heart rates, total distances covered, and high-intensity running distances for U9 boys and girls irrespective of the game format. Locomotor demands appeared to be even higher when playing on larger pitches, whereas the smaller pitch size and fewer players led to elevated technical involvement.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1358
Author(s):  
Taihui Wu ◽  
Jianshe Ma ◽  
Chengchen Wang ◽  
Haibei Wang ◽  
Liangcai Cao ◽  
...  

An optical encryption method based on computer generated holograms printing of photopolymer is presented. Fraunhofer diffraction is performed based on the Gerchberg-Saxton algorithm, and a hologram of the Advanced Encryption Standard encrypted Quick Response code is generated to record the ciphertext. The holograms of the key and the three-dimensional image are generated by the angular spectrum diffraction algorithm. The experimental results show that large-size encrypted Quick Response (QR) code and miniature keys can be printed in photopolymers, which has good application prospects in optical encryption. This method has the advantages of high-density storage, high speed, large fault tolerance, and anti-peeping.


Author(s):  
Marcin Lefik ◽  
Krzysztof Komeza ◽  
Ewa Napieralska-Juszczak ◽  
Daniel Roger ◽  
Piotr Andrzej Napieralski

Purpose The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor. Design/methodology/approach To obtain heat sources for the thermal model, calculations of the electromagnetic field were made using the Opera 3D program including effect of rotation and the resulting eddy current losses. To analyse the thermal phenomenon, the 3D coupled thermal-fluid (CFD) model is used. Findings The presented results show clearly that laminated construction is much better from a point of view of efficiency and temperature. However, solid construction can be interesting for high speed machines due to their mechanical robustness. Research limitations/implications The main problem, despite the use of parallel calculations, is the long calculation time. Practical implications The obtained simulation and experimental results show the possibility of building a machine operating at a much higher ambient temperature than it was previously produced for example in the vicinity of the aircraft turbines. Originality/value The paper presents the application of fully three-dimensional coupled electromagnetic and thermal analysis of new machine constructions designed for elevated temperature.


2014 ◽  
Vol 657 ◽  
pp. 121-125
Author(s):  
Daniel Măgurian ◽  
Gheorghe Oancea

This paper presents a design methodology of laminating tools for automotive interior parts using CATIA software package. The authors developed a software tool namedLTFrameDesignusingVBA for Applicationunder CATIA package, which automatically generates the main frame of the laminating tool according to the parts shapes, its dimensions and designer requirements. The software automates some stages of standard design and minimizes the design time and costs. The paper also presents the design stages which are followed by the user to obtain a 3D complete assembly of the laminating tool.


Author(s):  
Hanz Richter ◽  
Kedar B. Karnik

The problem of controlling the rectilinear motion of an open container without exceeding a prescribed liquid level and other constraints is considered using a recently-developed constrained sliding mode control design methodology based on invariant cylinders. A conventional sliding mode regulator is designed first to address nominal performance in the sliding mode. Then an robustly-invariant cylinder is constructed and used to describe the set of safe initial conditions from which the closed-loop controller can be operated without constraint violation. Simulations of a typical transfer illustrate the usefulness of the method in an industrial setting. Experimental results corresponding to a high-speed transfer validate the theory.


2021 ◽  
Vol 26 (1) ◽  
pp. 40-53
Author(s):  
A.N. Yakunin ◽  
◽  
Aung Myo San ◽  
Khant Win ◽  
◽  
...  

In modern microprocessors to reduce the time resources the arithmetic-logic units (ALU) with an increased organization of arithmetic carry, characterized by high speed, compared to ALU with sequential organization of the arithmetic carry, are commonly used. However, while increasing the bit number of the input operands, the operating time of ALU of ALU with the accelerated arithmetic carry increases linearly depending on the number of bits. Therefore, the development of ALU, providing higher performance than the existing known solutions, is an actual task. In this work the analysis of ALU with sequential and accelerated organization of the arithmetic carry has been performed. To increase the speed of the operation, a multi-bit ALU has been developed. The simulation of ALU circuits has been executed in Altera Quartus –II CAD environment. The comparison has been performed by the number of logical elements and the maximum delay as a result of modeling the ALU circuits for 4, 8, 16, 32, and 64 bits. A scheme for checking the results has been implemented to confirm the reliability of developed ALU. As a result, it has been found that when performing operations with the 64-bit operands, the developed ALU reduces the maximum delay by 53 % compared to ALU with sequential arithmetic carry and by 35.5 % compared to ALU with the accelerated arithmetic carry, respectively.


Author(s):  
H Hirani ◽  
K Athre ◽  
S Biswas

The trend towards high power output, high speed and low power loss in engines requires a better understanding of bearing behaviour. Research in this area is directed more towards different aspects involved in bearing analyses, rather than providing a comprehensive guideline on design of bearing. This effort compiles the design methodology for selection of diametral clearance and bearing length by limiting the minimum film thickness, maximum pressure and temperature. The design procedure is summarized on the basis of the existing rapid bearing analyses for evaluation of the journal trajectory, minimum film thickness and maximum pressure and simplified thermal analysis. A flow chart is provided for step-by-step bearing design. Finally, two case studies of engine bearings are described: one investigates the VEB bigend connecting-rod bearing for a large industrial reciprocating engine and the other a main crankshaft bearing for an automotive engine. The methodology translates into easy-to-use expressions and the overall procedure is outlined, using practical data to demonstrate how this can be employed effectively by users.


Author(s):  
Arindam Chakraborty ◽  
Jayati Dey

The guaranteed simultaneous stabilization of two linear time-invariant plants is achieved by continuous-time periodic controller with high controller frequency. Simultaneous stabilization is accomplished by means of pole-placement along with robust zero error tracking to either of two plants. The present work also proposes an efficient design methodology for the same. The periodic controller designed and synthesized for realizable bounded control input with the proposed methodology is always possible to implement with guaranteed simultaneous stabilization for two plants. Simulation and experimental results establish the veracity of the claim.


Sign in / Sign up

Export Citation Format

Share Document